

A Systematic Approach to Predict System Testing Defects

using Prior Phases Metrics for V-Model

Muhammad Dhiauddin Mohamed Suffian
a,
, Suhaimi Ibrahim

b

aFaculty of Computing, Universiti Teknologi Malaysia (UTM), 81310 Skudai, Johor, Malaysia
bAdvanced Informatics School, Universiti Teknologi Malaysia (UTM), 54100 Kuala Lumpur, Malaysia

Abstract

In order to prevent more defects from escaping to end-users for a V-model development
process, independent testing team needs a predicted total number of defects for any
software under test at the start of system testing so that defects can be fixed as early as
possible. Metrics from requirement to coding phases are required to develop this defect
prediction. Thus, this research introduces and explains the systematic approach to
predict system testing defects for a V-model by using prior phases metrics. By applying
regression analysis as part of the approach, it demonstrates that total number of defects
in system testing can be predicted by using requirement, design and coding metrics. The
approach produces a mathematical equation which is used to predict defects in system
testing. The equation is then verified on new software projects so that it is fit for final
implementation and integration into software development process.

Keywords: SYSTEM TESTING, DEFECTS, DEFECT PREDICTION, PRIOR
PHASES METRICS, V-MODEL, REGRESSION ANALYSIS

1. Introduction

One of the traditional and well-known process models in software engineering is
Waterfall model. This model arranges the software development phases and activities in
linear sequence [1]. Concept definition, requirement, design, code, testing and
maintenance phases are the core phases involved in Waterfall model [2]. Realizing that
early testing is crucial in software development, Waterfall model is extended by
incorporating the element of early testing activities and later known as V-model [3].
Rigor verification and validation activities throughout the development phases are the
main emphasis of early testing before the software is released to end-users. Verification
activities in V-model may involve but not limited to following activities: requirement
reviews, design reviews, code inspection, unit testing, integration testing as well as
system testing. All activities share the same objectives that are to detect defects and fix
them as early as possible in the life cycle. In particular, when the software has

* Corresponding author. Tel.: +60-019-6432654

E-mail address: mdhiauddin2@live.utm.my.

Open International Journal of Informatics (OIJI) Vol 2 (2013)

1

completed coding phase and passed the unit-integration test, it will undergo system
testing to validate that the software under test meets system and user requirements.

Specifically in V-model, system testing is carried out by an independent testing team
in discovering defects, both functional and non-functional defects as well as ensuring
that the software system conforms to the specified user and system requirements.
However, the team has to face several challenges in completing the test execution
activities within the deadline while making sure all possible defects has been discovered
and sent to development for fixing before finally releasing to the recipients. Realizing
that it is impossible to have zero defects for software, minimally it is reasonable to have
zero known-defects with the understanding that whatever defects that have been found
and fixed during system testing should not be re-introduced at the user‟s site, provided
that environment during testing phase and deployment is identical. Thus, early indicator
of total defects to be found in system testing is required to serve as a guide or reference
for the testing team to execute the test. The ideal scenario is to have this prediction
before the system testing starts.

From process improvement perspective particularly on testing, by being able to
predict defects for system testing, testing team would be able to contain as many defects
as possible within the same phase thus prevent them from escaping to deployment
environment. Strategically, testing team can allocate appropriate number of test
engineers across multiple test projects and schedule suitable number of days for test
execution when prediction of defects is in place. This will improve the management of
test execution so that it can be completed within time frame. In terms of test strategy,
test engineers could adopt more effective techniques and types of testing to ensure the
defects found are significantly close to the prediction. This is because it is impossible to
have 100% accurate prediction of defects. Thus, the chances of finding defects in the
software under test are higher when the test coverage is high. This will lead to the
production of higher quality of software.

For this reason, a systematic approach needs to be developed for predicting system
testing defects by considering metrics from prior phases, which include requirement,
design, and construction or coding phases. Besides that, testing-related metrics from
test activities which go in parallel with those phases, namely test requirement, test
planning, and test design are also considered. These metrics are analyzed to determine
the ones that can be the suitable predictors for defects.

This research is organized into Section 2 describing related works, Section 3
discussing on the proposed approach for predicting defects in system testing using prior
phases metrics, Section 4 explaining the case study while Section 5 concludes the
research findings together with the recommendation of future works for improving the
approach.

2. Related Work

Numerous works have been done with regard to the area of defect prediction.

However, not many of them really focus on developing suitable approach to specifically

predict defects for system testing. Works done by [4] has demonstrated that by using

Open International Journal of Informatics (OIJI) Vol 2 (2013)

2

cyclomatic complexity and lines of code (LOC), defects in software can be predicted.

Studies by [5] showed that project management, process improvement or work product

assessment can be used to predict defects. Product and project metrics that include

metrics from review, code testing, code peer review, product release usage and defect

validation were used in regression analysis done by [6] to predict defects. [7] used

mathematical distributions to predict defects in software. [8] introduced Defect Type

Model (DTM) based on Bayesian Network by using defect severity as the method for

predicting defects while [9] applied multivariate linear regression for defect inflow

prediction. On the other hand, Six Sigma methodology was adopted by [10] as approach

to predict defects via Quality Function Deployment (QFD) and transfer function. In

another works, [11] used COQUALMO to predict defects density in software to

improve software quality. This was based on defect identification and defect removal

processes.

Those prior works have addressed different areas of software defect prediction.

Works by [12] concentrated on the area of remaining defects while testing is on-going

while [13] was more concerned about defects in email and web for open source

software. Defect could also be predicted for each phase in the software life cycle by

using Rayleigh model [14]. [15] and [16] portrayed similar approach of defect

prediction with this research via the application of Bemar model and CDM model,

respectively.

There were various predictors used and manipulated to predict defects. Defects in

software can be predicted by using object-oriented metrics [13] or developer metrics

comprising number of developers who made modification prior to release, during the

release and all releases [17]. Metrics from historical data could become good predictors

and this was used by [18] to predict defects. A model was developed by using detailed

requirements and defect potentials derived for each development phase based on

historical data [19]. Besides that, by using just three software metrics, effective software

defect prediction model can be built with [20].

Every approach of defect prediction needs to be measured for its validity and fitness

for use. [21] suggested that the prediction success can be measured by using percent of

faults found. Alternatively, a successful prediction can be evaluated in terms of its

suitability in assisting in future maintenance of the software [22]. However, a good

benchmark for the method and result of the prediction can only be achieved when huge

data sets are in place [23].

Recent studies on defect prediction have touched on several areas of concern. [24]

grouped the data used for selecting the predictors into quantitative and qualitative data,

which could be mapped to the term product and process metrics used in this research.

The qualitative one was taken from COQUALMO while the quantitative data consists

of software size, team size, test cases and effort. However, the focus was more towards

Open International Journal of Informatics (OIJI) Vol 2 (2013)

3

defects in early stage of development life cycle.

Significant effort has been made to cater for defect prediction in various nature and

context of software. A framework for defect prediction in specific context of software

was introduced by dividing it into phases: preparation, model creation and model usage

[25]. This shall serve as strong guideline in formulating reliable defect prediction model

for software. In relation to this, the term “Defect Prediction 2.0” was coined as an

emphasis that defect prediction totally work by incorporating finer granularity of

metrics, mechanism to deal with noise in the prediction as well as tackling new

„customers‟ for the prediction [26].
Therefore, this research specifically addresses the development of introducing a

systematic approach to predict system testing defects by using metrics in prior phases
for any software under test adopting V-model development process.

3. Findings and Discussion

There are many ways of representing V-model development process together with corresponding

testing activities. A typical representation of V-model can be seen in Figure 1 below [3]:

Fig. 1. V-model development process.

Although corresponding test levels for every development phase are indicated in

Figure 1, there is no indication on how other kinds of verification activities are mapped
into the process. Thus, the diagram above has been revisited and revised by
incorporating the activities as well as the area of prediction with regard to V-model. The
diagram is presented in Figure 2 below:

Open International Journal of Informatics (OIJI) Vol 2 (2013)

4

Fig. 2. Verification and validation activities in V-model development process.

Based on Figure 2, the verification and validation (V&V) for V-model could be

grouped into two: development-related and test-related activities. Development-related
activities may consist of requirement review, high level design review, low level design
review, Graphical User Interface (GUI) design review, code inspection, unit test and
integration test. On the other hand, test planning, test cases design, test scripts design,
sanity test and system testing or system test execution can be grouped into test-related
activities. Any V&V activity in deploy phase is not touched in this research as the phase
comes after system testing and does not fall in the area of interest. Metrics is used to
track and measure each activity. These metrics are categorized into size-related, defects-
related and effort-related metrics. The details of each phase, activities and
responsibilities are explained below in Table 1:

Table 1: Software development phases and its corresponding activities

Phase Activity Responsibilities

Requirement Requirement analysis and development Developer

Requirement review Developer

Design Design development Developer

Design review (high-level design, low-level design,

database design, GUI design)

Developer

Test plan development Tester

Test plan review Tester

Construction/Coding Coding Developer

Code inspection Developer

Unit testing Developer

Integration testing Developer

Test cases development Tester

Test cases review Tester

Testing System testing Tester

Open International Journal of Informatics (OIJI) Vol 2 (2013)

5

Each activity mentioned above is associated with respective metrics which will be
discussed later. Thus, metrics collected from requirement to construction/coding phases
are used and analyzed to determine which of them could become the significant
predictors for defects in system testing. Based on this understanding, the proposed
approach is developed by taking into account metrics from requirements to construction
phases as independent variables while defects in system testing are treated as dependent
variable. This forms the basis of this research, which is to come out with a systematic
approach that could predict system testing defects by using prior phases‟ metrics as
presented in Figure 3.

In Figure 3, the metrics collected from the activities in Table 1 are stored in its own
logical repository. All repositories form the master repository of product and process
metrics. These repositories become the main source for developing the approach for
predicting system testing defects. Metrics from the master repository are extracted for
analysis so that only accurate data are used for statistical analysis later. This covers
metrics data on type of software projects, methodology, effort, defects as well as any
other data related to process and product metrics. Data that has been filtered is then
selected and put into statistical analysis. As specified earlier, interaction between
metrics in prior phases as independent variables and defect metrics in system testing
phase as dependent variable can be observed via statistical analysis.

The results produced by the statistical analysis are in the form of several
mathematical equations, which later being verified and evaluated by applying them into
new projects which are yet entering system testing phase. For each equation applied into
new projects, comparison is done between predicted defects and the actual defects. The
equation that produces the most significant result of prediction is selected as the final
prediction for system testing defects which later incorporated into the whole software
development process for actual implementation. In this research context, statistical
analysis technique chosen is regression analysis as for demonstrating the suitability of
the whole approach.

Open International Journal of Informatics (OIJI) Vol 2 (2013)

6

Fig. 3. Proposed approach for predicting system testing defects using prior phases metrics

Open International Journal of Informatics (OIJI) Vol 2 (2013)

7

Figure 4 outlines the statistical analysis process as depicted in Figure 3. The

explanation of the steps presented in Figure 4:

 It starts with identifying the metrics to be collected from phases prior to system

testing that involve development-related activities and testing-related activities as
explained previously. The metrics are treated as the independent and dependent
variables.

 Once the right metrics have been identified, they are collected from both
development and testing repositories, which also include metrics on historical
defects.

 The metrics are filtered and validated to ensure only correct and accurate metrics
data are used.

 The validated metrics are then used interchangeably in regression analysis.
Interchangeably here means dependent variable and independent variables are
interchanged between each other to observe the interaction between them and to
see which set of interactions produces the best prediction equation.

 The acceptance criteria for any mathematical equation to be considered as
prediction equation candidate I is based on R-squared and R-squared (adjusted)
values of at least 90% as well as P-value of less than 0.05. If the prediction
equation achieve the values of equal or more than 90%, for both R-squared and
R-squared (adjusted) while then P-value for each metric (predictor) used is less
than 0.05, then that equation could be selected as the right candidate for defect
prediction equation.

 If both R-squared and R-squared (adjusted) values are less than 90%, then the
selection of metrics (predictors) need to revised and put into regression analysis
again. Same process takes place if P-value of each predictor is more than 0.05.

The candidate (s) for prediction equation is applied into new testing projects. During

the verification of the equation, comparison is made between the predicted defects
before testing starts against the total number of defects found after test execution
completed. The equation is selected as the final prediction model equation for system
testing defects when the actual defects found fall within the 95% of Prediction Interval
(PI). If the defects found fall out of the PI range, then the metrics need to be revisited
and revised following the same process.

Open International Journal of Informatics (OIJI) Vol 2 (2013)

8

Fig. 4. Regression analysis process.

The final prediction model is then integrated back into the software development

process as part of continuous improvement activities. As the prediction could be higher
or lower than the actual defects found, it is subjected for further refinement. Figure 5
depicts how the final prediction is implemented in the overall V-model process.

Fig. 5. Implementation of defect prediction for system testing.

Open International Journal of Informatics (OIJI) Vol 2 (2013)

9

Next section presents the case study that demonstrates the suitability of the proposed
approach in predicting defects for system testing in V-model.

4. Case Study

 Several software projects that have completed testing are selected. The nature of the
projects comprise of web-based, standalone application and web service. This involves
various programming languages including PHP, Java and .NET. The list of metrics
collected from these project‟s repositories for further analysis is listed below:

• Number of requirement pages
• Number of design pages
• Code size in a form of kilo lines of code (KLOC)
• Total test cases
• Total effort in test case design
• Total effort in phases prior to system testing
• Requirement error
• Design error
• Code and unit testing (CUT) error
• Test cases error
• Total defects logged in a form of all defects and functional defects
•

Data for that metrics are collected and validated for accuracy. After validation, the
following set of data as in Table 2 is obtained and later used for regression analysis:

Table 2: Data set used

 Req.

Error

Design

Error

Coding

Error

KLOC Req.

Page

Design

Page

Total

Test

Cases

Test

Cases

Error

Total

Effort

Test

Design

Effort

Funct.

Defects

All

Defects

Project

A

5.00 22.00 12.00 28.80 81.00 121.00 224.00 34.00 16.79 15.20 19.00 19.00

Project

B

0.00 0.00 1.00 6.80 171.00 14.00 17.00 6.00 45.69 40.91 1.00 1.00

Project

C

9.00 10.00 14.00 5.40 23.00 42.00 24.00 6.00 13.44 13.44 4.00 4.00

Project

D

7.00 12.00 2.00 1.10 23.00 42.00 25.00 9.00 4.90 4.90 0.00 0.00

Project

E

11.00 29.00 3.00 1.20 23.00 54.00 28.00 12.00 4.72 4.59 3.00 3.00

Project

F

0.00 2.00 7.00 6.80 20.00 70.00 66.00 7.00 32.69 16.00 16.00 27.00

Project

G

3.00 25.00 11.00 4.00 38.00 131.00 149.00 0.00 64.00 53.50 3.00 3.00

Open International Journal of Informatics (OIJI) Vol 2 (2013)

10

Project

H

4.00 9.00 2.00 0.20 26.00 26.00 24.00 0.00 5.63 5.63 0.00 0.00

Project

K

17.00 0.00 3.00 1.40 15.00 28.00 13.00 4.00 9.13 7.88 1.00 1.00

Project

N

61.00 34.00 24.00 36.00 57.00 156.00 306.00 16.00 89.42 76.16 25.00 28.00

Project

O

32.00 16.00 19.00 12.30 162.00 384.00 142.00 0.00 7.00 7.00 12.00 12.00

Project

P

0.00 2.00 3.00 3.80 35.00 33.00 40.00 3.00 8.86 8.86 6.00 6.00

Project

Q

15.00 18.00 10.00 26.10 88.00 211.00 151.00 22.00 30.99 28.61 39.00 57.00

Project

R

0.00 4.00 0.00 24.20 102.00 11.00 157.00 0.00 41.13 28.13 20.00 33.00

 Different sets of regression analysis have been carried out to get the most significant
result. In the case of dependent variable, defects are interchanged between “All Defects”
and “Functional Defects”, while for independent variables, “EffortDays” and
“EffortTestDesign” are interchanged accordingly. As a note, “EffortDays” refers to
metrics on the effort spent by testers in all phases prior to test execution while
“EffortTestDesign” refers to metric spent by testers in creating test cases during test
design. Figure 6, Figure 7, Figure 8 and Figure 9 present the results of regression
analysis. The details of each regression set are explained below:

Figure 6

 Independent variables (predictors): Requirement error, CUT error, KLOC,
requirement pages, design pages, total test cases, effort days

 Dependent variable (target): Functional defects

Figure 7
 Independent variables (predictors): Requirement error, CUT error, KLOC,

requirement pages, design pages, total test cases, effort days
 Dependent variable (target): All defects

Figure 8
 Independent variables (predictors): Requirement error, CUT error, KLOC,

requirement pages, design pages, total test cases, effort test design
 Dependent variable: Functional defects

Figure 9
 Independent variables (predictors): Requirement error, CUT error, KLOC,

requirement pages, design pages, total test cases, effort test design
 Dependent variable: All defects

Open International Journal of Informatics (OIJI) Vol 2 (2013)

11

Fig. 6. Result A of regression analysis

Fig. 7. Result B of regression analysis

Open International Journal of Informatics (OIJI) Vol 2 (2013)

12

Fig. 8. Result C of regression analysis

Fig. 9. Result D of regression analysis

Open International Journal of Informatics (OIJI) Vol 2 (2013)

13

The rationale behind subtituting “AllDefects” and “Functional Defects” as dependent
variable is to observe whether the model equation could effectively predict all defects or
functional defects in. The same thing goes for the independent variables when
substituting “EffortDays” and “EffortTestDesign”. This is to examine which of the two
metrics could become the most significant predictor for system testing defects, as part
of other independent variables used in generating the equation for predicting the defects.

The results for regression analysis demonstrate that all prediction model equations
have both R-Squared and R-Squared (adjusted) values of more than 90%. Besides that,
P-value of each predictor or independent variable in every equation is less than 0.05.
Thus, no decision can be made on which equation should be selected as the final
prediction model for system testing defects. For this reason, all four equations are
verified by applying them three new projects that have yet entered system testing
phase. This is to determine which equation could closely predict total defects in system
testing. The results of verification are shown in Table 3 below:

Table 3. Verification results

Target Effort Predictors Project Predicted Defects Actual

Defects

95% PI

(min, max)

Functional

Defects

All Tester Effort Prior

to System Testing

Project 1 182 187 (155, 210)

Project 2 6 1 (0, 14)

Project 3 1 1 (0, 6)

All Defects All Tester Effort Prior

to System Testing

Project 1 298 230 (241, 356)

Project 2 9 9 (0, 24)

Project 3 2 1 (0, 12)

Functional

Defects

All Tester Effort In

Test Design Prior to

System Testing

Project 1 183 187 (201, 392)

Project 2 8 1 (0, 19)

Project 3 2 1 (0, 9)

All Defects All Tester Effort in

Test Design Prior to

System Testing

Project 1 296 230 (142, 225)

Project 2 11 9 (0, 37)

Project 3 3 1 (0, 19)

Prediction Interval column represented as 95% PI (min, max) describes the minimum

and maximum number of predicted total defects for the project for particular equation
used. For example, for predicting defects in Project 1, the range of prediction should fall
between 155 to 210, in which “EffortDays” is used as one of the predictors and
“FunctionalDefects” is used as dependent variable. After looking at all prediction
results, it is apparent that first equation produces the most significant result since the
prediction falls very close to the specified 95% PI. In other words by applying that
equation, requirement error, coding error, kilo lines of code (KLOC), requirement page,
design page, total test cases as well as total effort days spent by test engineers are the
most significant metrics from prior phases that serve as predictors to predict system
testing defects in V-model. The case study also shows that due to several limitations
such as size of data set, number of projects and type of metrics collected, the proposed

Open International Journal of Informatics (OIJI) Vol 2 (2013)

14

approach could produce mathematical equation that can only predict functional defects.
Therefore, more things need to be put in place in terms of improving the prediction so
that in the future, this approach could predict different type of defects as well as
dynamically produce prediction model equation for different nature and type of
software.

5. Conclusion

This research has successfully established a systematic approach to predict system
testing defects by exploiting prior phases metrics, specifically for V-model development
process. This is achieved by adopting statistical analysis via regression analysis
technique as part of the proposed approach, which is able to serve as great tool in
determining right predictors for testing defects and measuring accuracy of the prediction.
It is also recognized that it is a challenge to have an absolute prediction of defects in
system testing since there are many other aspects that need to be considered. Therefore,
having a maximum and minimum range for defect prediction can provide sufficient room
for the independent testing team to have a control plan on what to do should the
prediction does not fall within the specified range.

Moving forward, it is essential to consider more metrics to construct the prediction,
particularly product-related metrics as well as the level of granularity of the metrics.
Furthermore, the improved version of the prediction should take into account the
capability of the approach to formulate prediction model that could forecast non-
functional defects as well as severity of the defects. Importantly, the prediction in this
research is treated as generalized solution and does not consider prediction of defects
for specific type and nature of software. Therefore, any future work is needed to
strengthen the approach by being able to have specific prediction for different types of
software, so that prediction of defects, particularly for system testing is more useful and
practical.

Acknowledgements

The authors wish to thank to the representatives from the R&D organization that
provided the data and input for making the research a successful one.

References

[1] Jalote, P.A Concise Introduction to Software Engineering. Springer, 1st ed. New
York, 2008.

[2] Laplante, P.A. What Every Engineer Should Know About Software
Engineering. Taylor & Francis Group. Boca Raton, FL, 2007.

Open International Journal of Informatics (OIJI) Vol 2 (2013)

15

[3] Hambling, B. Software Testing: An ISTQB-ISEB Foundation Guide, Second
Edition. British Information Society Limited. North Star Avenue, Swindon, 2010.

[4] Fenton, N.E. and Neil, M. A Critique of Software Defect Prediction Models.
IEEE Transactions On Software Engineering. vol. 25 (5), pp.675-689, 1999.

[5] Clark, B. and Zubrow,D. How Good is the Software: A Review of Defect
Prediction Techniques. Software Engineering Symposium. Carnegie Mellon University,
2001.

[6] Wahyudin, D., Schatten, A., Winkler, D., Tjoa, A.M. and Biffl, S. Defect
Prediction using Combined Product and Project Metrics: A Case Study from the Open
Source “Apache” MyFaces Project Family. In Proceedings of Software Engineering and
Advanced Applications (SEAA '08), 34

th
 Euromicro Conference, pp. 207-215, 2008.

[7] Sinovcic, I. and Hribar, L. How to Improve Software Development Process
using Mathematical Models for Quality Prediction and Element of Six Sigma
Methodology. In Proceedings of the 33rd International Conventionions 2010 (MIPRO
2010), pp. 388-395, 2010.

[8] RadliRski, L. Predicting Defect Type in Software Projects. Polish Journal of
Environmental Studies, vol.18 (3B), pp. 311-315, 2009.

[9] Staron, M. and Meding, W. Defect Inflow Prediction in Large Software Projects.
e-Informatica Software Engineering Journal, vol. 4 (1), pp. 1-23, 2010.

[10] Fehlmann, T. Defect Density Prediction with Six Sigma. Presentation in
Software Measurement European Forum, 2009.

[11] Mittal, A. and Dubey, S.K. Defect Handling in Software Metrics. International
Journal of Advanced Research in Computer and Communication Engineering, vol. 1(3),
pp. 167-170, 2012.

[12] Haider, S.W. , Cangussu, J.W. , Cooper, K.M.L. and Dantu, R. Estimation of
Defects Based on Defect Decay Model: ED3M. IEEE Transactions on Software
Engineering, vol. 34 (3), pp. 336-356, 2008.

[13] Gyimothy, T., Ferenc, R. and Siket, I. Empirical Validation of Object-Oriented
Metrics on Open Source Software for Fault Prediction. IEEE Transactions on Software
Engineering, vol. 31 (10), pp. 897-910, 2005.

[14] Thangarajan, M. and Biswas, B. Software Reliability Prediction Model. Tata
Elxsi Whitepaper,2002.

[15] Bertolino, A. and Marchetti, E. A Simple Model to Predict How Many More
Failures will appear in Testing. Proceedings of Quality Week Europe. Brussel, Belgium.
1998.

[16] Karcich, R.M., Cangussu, J.W. and Earl, A. System Testing Process Behavior
Prediction at Sun Microsystem. 14th International Symposium on Software Reliability
Engineering 2003 (ISSRE 2003).

[17] Weyuker, E.J. , Ostrand, T.J. and Bell, R.M. Using Developer Information as a
Factor for Fault Prediction. In Proceedings of the Third International Workshop on
Predictor Models in Software Engineering (PROMISE'07), pp.8, 2007.

[18] Zimmermann, T., Nagappan, N. and Zeller, A. Predicting Bugs from History.
In Software Evolution (Software Evolution), pp. 69-88, February 2008.

[19] Zawadzki, L. and Orlova, T. Building and Using a Defect Prediction Model.
Presentation in Chicago Software Process Improvement Network, 2012.

Open International Journal of Informatics (OIJI) Vol 2 (2013)

16

[20] Wang, H., Khoshgoftaar, T.M. and Seliya, N. How Many Software Metrics
Should be Selected for Defect Prediction?. Proceedings of the Twenty-Fourth
International Florida Artificial Intelligence Research Society Conference, pp. 69-74,
2011.

[21] Ostrand, T.J. and Weyuker, E.J. How to Measure Success of Fault Prediction
Models. In Proceedings of Fourth International Workshop on Software Quality
Assurance, 2007 (SOQUA ‟07), pp. 25-30, 2007

[22] Li, L.P. , Shaw, M. and Herbsleb, J. Selecting a Defect Prediction Model for
Maintenance Resource Planning and Software Insurance. In Proceedings of 5th
Workshop on Economics-Driven Software Engineering Research (EDSER '03), pp. 32-
37, 2003.

[23] D‟aq, M., Lanza, M. and Robbes, R. Evaluating Defect Prediction Approaches:
A Benchmark and an Extensive Comparison. Journal of Empirical Software
Engineering, vol. 17, no. 4-5, pp. 531-577, 2012

[24] Wang, D., Wang, Q., Hong, Z., Chen, X., Zhang, L. and Yang, Y.
Incorporating Qualitative and Quantitative Factors for Software Defect Prediction. In
Proceedings of the 2nd International Workshop on Evidential Assessment of Software
Technologies (EAST‟12), pp. 61-66, 2012.

[25] Wahyudin, D., Ramler, R. and Biffl, S. A Framework for Defect Prediction in
Specific Software Project Contexts. Book Section, Software Engineering Techniques,
Lecture Notes in Computer Science, vo. 4980, pp. 261-274, 2011.

[26] Kim, S. Defect, Defect, Defect: Defect Prediction 2.0. In Proceedings of the
8th International Conference on Predictive Models in Software Engineering
(PROMISE‟12), pp. 1-2, 2012.

Open International Journal of Informatics (OIJI) Vol 2 (2013)

17

