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Abstract  

The paper aims to introduce an innovative method for updating of the harmony 
memory. In this manner, the aim of the research is to create modification of the 
harmony search or HS algorithm. The potential advantage of this technique is that 
compared to the basic technique, the amount of evaluations pertaining to the HS 
algorithm for objective function of the HS algorithm are reduced significantly. The new 
method is superior to the old one in terms of maximum number of improvisations and 
subsequent to it, fast performance convergence. Compared to the older version, the new 
method was found to be more effective when assessed by four renowned functions 
usually used as test problems to detect performance among optimization algorithms. 
 
Keywords: Harmony Search Algorithm, Evolutionary Algorithm, Optimization, Meta-
Heuristic Algorithm 

1. Introduction 

When creating a balance between the best use of energy and achieving the desired 
results in performance, evolutionary algorithms are considered the best analyzing tools. 
The HS algorithm technique was introduced by [1] and since then remains one the 
preferred algorithm for optimization problems. The HS algorithm like other meta-
heuristic algorithms employs high level techniques for exploration and exploitation of 
the huge solution space. Since the discovery of HS algorithm, it has been used 
extensively with positive results. Its applicability is universal, which is the reason for its 
high appeal. So far, the benefiting areas of human needs include pipe designing [2, 3], 
distribution networks for water [4], various structural designing [5, 6, 7], data clustering 
procedures [8], industrial designing [9] and IT-related  applications and programs [10]. 
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Other important areas benefiting from HS include various medical studies, and their 
protocols [11, 12, 13] as well as improving and changing the reconfigurable mobile 
robot prototypes [14]. At the same time, research is also being carried out to improve 
the HS model itself since the past ten years. Various gurus of different fields have been 
able to mould the HS model to suit their own design and project needs. [15] could  do 
just that for his project on rehabilitation of pipe networks. [16] employed a revised HS 
memory management approach and Pareto-dominance technique to handle the multi-
modal and constrained optimization problems. For the improvement of designs in steel 
frames, [17] used the same technique and changed it to produce a harmony memory. It 
has also benefited by changes via the variable pitch adjustment rate or par [18]. [19] 
could  show that when the fret width was adjusted for current populations, the results 
were more accurate and significant. However, he was sure to state that the fret adjusted 
can only be acceptable in cases where the hmcr or the harmony memory considering the 
rate was near to or equal to one. 

The HS algorithm can be considered as universally acceptable, and has many 
advantages. It is different from other similar programs as it can  utilize more than one 
search point at the same time. It is independent of the objective function derivative and 
can achieve optimum values of such objective functions, both at global or near-global 
optimization. It can take up high dimensional domains in this regard. Therefore, in 
many ways, the HS algorithm can be applied to both simple as well as complex 
analogies with good results and outcomes. 

The advantages are met with one strong disadvantage. Typically, an HS algorithm, is 
computationally intensive and during its optimum finding process, requires longer and 
multiple objective function evaluation. 

It was interesting to note that while there is much research on the HS algorithm, its 
applicability and its use, there was very little research carried out pertaining to the 
harmony memory updating. It is this lack of research that has led to the creation of this 
particular study and modification. This modification aims to reduce the number of 
improvisations that are needed in its processing in order to attain fast fitness 
achievement. This study will first evaluate the basic HS algorithm and how it works. 
This will be followed by the new innovations and modifications carried out on it. 
Finally, the two forms of HS algorithms will be compared, and two examples used to 
analyze the results from both types to assess the difference in outcomes. 

2. Original HS method 

The philosophy of the HS algorithm is essentially much different from other types of 
meta-heuristic optimization algorithms. This is because the other algorithms derive their 
inspiration from different natural processes. The HS algorithm, on the other hand, is 
inspired from the musical improvisation techniques. Just as the group of musician's 
search for a perfect harmony to create the best piece of music with the orchestra, the 
same is to find the best optimal solution for an optimization problem. According to [20], 
within a musical improvisation, there are three elements of correspondence carried out: 
 The musical note is played exactly from musician’s memory. The same similarity is 

sought for memory usage in HS algorithm. 



 

 

 In order to adjust the pitch and other musical harmony issues, a musician may attempt 
to experiment with slightly similar aforementioned notes in order to make the music 
notes sound better. This is similar to the pitch adjusting issues pertaining to HS 
algorithm. 

  Putting in a random note or improvising of music within the piece, which is similar 
to the randomization carried out in HS algorithm.  

The following steps are undertaken to apply HS algorithm by the given elements:  
Step 1: The primary harmony memory is created, as shown below, where i

jx  is the 
thj objective function variable in thi randomly selected solution. 

 

  (1)  

Equation (1) is formed through random variables, which can be produced in desired 

ranges. 
Step 2: Substituting each row from the harmony memory matrix, defined by M, in 

objective function, ),,,( 21 nxxxf  , S solutions are obtained. Here F represents the 
objective function solutions' matrix.   























),,,(

),,,(

),,,(

21

22

2

2

1

11

2

1

1

s

n

ss

n

n

xxxf

xxxf

xxxf

F









  

  (2)  

Step 3: A new harmony is created from the harmony memory matrix. One of the 
rows of the matrix M is selected. This selection is based on the probability of harmony 
memory considering rate or hmcr mentioned previously. This is considered as the new 
potential solution candidate. A uniform random number is attained, called as R, which 
has the range of [0,1]. This is then compared with the hmcr.  Should the hmcr be found 
greater than R, a new solution is then selected from the thi randomly selected row of the 
M. 

 

  (3)  

By taking values close to it, and by using a probability of pitch adjusting rate or par, 

the new solution can be further muted. The new candidate is taken from the harmony 

memory with probability of hmcr, which is then subjected to be tuned by probability of 

par.  In this way, when taking the case of muteP , the mutation’s total probability becomes. 

 

   (4)  
As per the practice carried out, the pitch is usually adjusted linearly. This leads to the 

modification to the equation (3), via mutation, to  find a new candidate solution. The 
following formula is then used. 
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(5)  

where jbw , ),,2,1( nj  , is pitch bandwidth, RND is a uniform random distribution 
number with the range of [-1, 1]. 

Step 4: In the case where the value of hmcr is found to be less than R, there is no 
need to carry out the third step. The new candidate solution, newX , is taken from the 
entire set randomly. Its probability becomes 1-hmcr. The process enables creating a 
wider domain of search within the search and helps in reaching global optimization. 

Step 5: The next step is called updating of harmony memory. In this step, )( newXf is  
is compared with the worst array of the matrix F, )( worstworst Xf , minimum array of F in 
minimization problem or maximum array of F in maximization problem. If )( newXf  is 
less than )( worstworst Xf  in minimization problem or is greater than )( worstworst Xf  in 
maximization problem, the new objective solution is replaced with the worst array. 
Consequently, newX is also replaced by the worstX in the matrix M.  

Step 6: Steps 3 until 5 are repeated for the number of iterations that were assigned 
before hand is reached for the termination criterion. 

3. Modified HS method 

Our modified HS algorithm incorporates a new technique in order to update the 
harmony memory. The modification follows in the later stage at Step 5, where as other 
HS steps are similar to the basic method. The basic algorithm method operates in the 
following manner. When a candidate solution wins to place in harmony memory, it 
removes only one member of the harmony memory having the worst reputation. It then 
replaces it. The modified method is slightly different. Based on the Steps 3 or 4, the 
objective function of the new solution )( newXf , is computed and comparisons made 
with all arrays of the objective function matrix F in the equation (2).  

Hence the comparison is drawn between )f(X new and arrays having worse values 
against it. This is followed by replacement of the newX with harmony memory members 
having objective functions lesser than the )( newXf  in minimization problems or have 
greater values in maximization problems. The new HS algorithm, therefore, removes 
members of harmony memory having lesser reputations, and replaces them the winner 
candidate solution. In other words, in the modified algorithm, we may have changes in 
many members of the M during each improvisation while in the original algorithm only 
one member of the M is updated in each improvisation.     

4. Implementation and results 

The following is four examples created to compare the outcomes of the basic HS with 
the new HS algorithm. This will help us in identifying the capability of the modified 
algorithm. The areas of comparison include the maximum number of improvisations, 
accuracy, and subsequent to it, fast performance convergence for four famous objective 
functions.     
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4.1. Rosenbrock's banana function 

[21] introduced the Rosenbrock’s valley or Rosenbrock’s banana function. This 
function is used as a test problem to detect performance among optimization algorithms, 
and is non-convex in nature. 

])(100)1(1ln[),( 222 xyxyxf   (6)  

It is very difficult to achieve convergence to a global minimum. This is because the 
global minimum, defined as 0min f , takes place in a long, narrow, parabolic shaped flat 
valley at (1,1). This function was successfully used to prove the worth of the HS 
algorithm by [20]. In order to ensure that the comparisons were carried out equally, the 
random numbers generated from the HS modified algorithm version were placed 
simultaneously used in basic algorithm in the basic version as well. The same initial 
harmony memory is also used in both types of algorithms. This helped in pairing of the 
comparisons, thus clearly showing results from each set of comparison. The 
recommended parameter setting for both types of algorithms is shown in Tab. 1. The 
definition of each value corresponds with the values stated in the traditional values of 
the [20]. These include S, which is the number of harmony memory solution, hmcr 
which is the probability of the harmony memory considering the rate, the par which is 
the probability of pitch adjusting rate, and bw which is the bandwidth. The algorithm 
was set to stop at a certain predefined number of improvisations. In this manner, the 
optimal value of the Rosenbrock’s banana function by the basic and the modified HS 
algorithm can be examined, and comparisons drawn on the two methods for the number 
of improvisations which the optimum value is achieved.  

Table 1. HS parameters setting for Rosenbrock's banana function  

S hmcr par
 

bw Search Domain of 

 Variable x 

Search Domain of  

Variable y 

Pre-selected Number of  

Improvisations 

20 0.95 0.7 1 [-10, 10] [-10, 10] 600 

 

Tab. 2 illustrates the results obtained. It was found that the minimum value 
approximation for Rosenbrock’s banana function was attained at very different 
iterations for each type of HS method. The traditional method showed it at 433 
iterations, while 225 iterations were needed by the modified HS method. The achieved 
optimum value was more accurate for the modified HS when compared to the basic HS 
algorithm, despite using the same random numbers and parameters setting operations.  

Table 2. Comparison of basic and modified HS 

 x* y* f(x*, y*) Number of Improvisations 

Basic HS 1.0140 1.0282 1.9598
410  433 

Modified HS 1.0059 1.0118 3.4930
510  225 



 

 

Fig. 1(a) and Fig. 1(b) both show the convergence history of the performance of both 
types of HS algorithm methods.  

 

Fig. 1. (a) convergence of the minimization of the Rosenbrock's banana function by basic HS algorithm; (b) convergence of the 

minimization of the Rosenbrock's banana function by modified HS algorithm 



 

 

As mentioned, in the HS modified method, if a candidate solution wins to place in 
harmony memory, it eliminates the members of the harmony memory having lesser 
reputations, and then replaces them. This helps in creating a descending trend 
throughout the convergence history in the modified HS version, as displayed in Fig. 
1(b).  The levelling off the graph after 225 improvisations is the indication that not any 
better optimum solution could be found. The same is not true to the traditional type of 
HS. In the traditional form, only one poor result is eliminated and replaced. This leads 
to the fluctuation in the convergence performance as shown in Fig. 1(a). The 
fluctuations in the graph remain even after the optimum value for the first time is 
achieved.  

4.2. Michalewicz’s Bivariate function 

In the second example, the use of Michalewicz’s Bivariate function [22] will take 
place. This is a multimodal test function that is carried out for optimization needs and 
can be seen below:  
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where the parameter m defines the “steepness” of the valleys or edges and is assumed to 
be 10 for this solution. A global minimum happens at -1.801 for n=2. To draw same 
comparisons, the same random numbers were assigned to both types of HS analysis. 
The comparisons, therefore, are accurate in the sense that the same values are being 
used for evaluation. Recommended parameters adjusting for both, basic and modified 
HS algorithms, which are run concurrently with same initial harmony memory have 
been demonstrated in Tab. 3. The improvisations were set at 150 after which the 
algorithm would stop. 

Table 3. HS parameters setting for Michalewicz’s Bivariate function (n=2)  

S hmcr par
 

bw Search Domain of 

 Variable x 

Search Domain of  

Variable y 

Pre-selected Number of  

Improvisations 

20 0.9 0.3 1 [0, π] [0, π] 150 

The results of this method are seen in the Tab. 4. In case of the Michalewicz’s 
Bivariate function, the minimum value for the original HS was attained at 62 iterations. 
For the modified HS method, the optimum value was found at 49 iterations. Again, the 
modified HS was superior to the basic one in terms of precise optimum value, when the 
same random numbers and parameter setting operations were used on both types of HS 
methods.  

Table 4. Comparison of basic and modified HS 

 x* y* f(x*, y*) Number of Improvisations 

Basic HS 2.1830 1.5708 -1.7949 62 

Modified HS 2.2029 1.5709 -1.8013 49 



 

 

 
Fig. 2(a) and Fig. 2(b) show the convergence history of performance for both types of 

HS algorithm methods.  

 

Fig. 2. (a) convergence of the minimization of the Michalewicz’s Bivariate function by basic HS algorithm; (b) convergence of the 

minimization of the Michalewicz’s Bivariate function by modified HS algorithm 



 

 

Again, the similar findings to the Rosenbrock’s banana function can be seen. The 
improved method displays a descending stepwise trend when viewing convergence 
history of performance. This was achieved because of the modified harmony memory 
update technique, shown in Fig. 2(b). Again, after 49 improvisations, the graph levels 
itself, showing that no more estimates can be found for better optimum solutions.  

For n=5 this function has a global optimum solution of -4.687. The solution space of 
this function has many local optimum solutions. Hence, the solution of this function 
using gradient-based optimization algorithms is quite difficult.  

This function is also solved by both basic HS and modified HS algorithms for n=5. 
Recommended parameters adjusting for both, basic and modified HS algorithm have 
been demonstrated in Tab. 5. 

Table 5. HS parameters setting for Michalewicz’s Bivariate function (n=5)  

S hmcr par
 

bw Search Domain of Variables  xi  

(i=1…5) 

Pre-selected Number of  

Improvisations 

30 0.9 0.5 1 [0, π] 8000 

 
Tab. 6 shows the comparison of the identified results for each algorithm. As it can be 

seen from Tab. 6, although both basic and modified HS algorithms find near optimum 
solutions; the identified results of the modified HS algorithm more closely agree with 
the global optimum solution. Also, modified HS algorithm again requires much fewer 
iterations than basic HS algorithm. 

Table 6. Comparison of basic and modified HS 

 x1* x2* x3* x4* x5* 
f(x1*, …, 

x5*) 

Number of 

Improvisations 

Basic HS 2.202852084 1.570787192 1.284957764 1.923045575 1.720492085 -4.687657338 2929 

Modified 

HS 
2.202905487 1.570796543 1.284992537 1.923057663 1.720468659 -4.687658088 1938 

 

The comparison of the convergence histories for each case can be seen in Fig. 3. The 
result of empirical study indicates that the proposed HS algorithm can find better results 
than basic HS algorithm with much fewer iteration numbers. 

4.3. Eason and Fenton’s gear train inertia function 

Eason and Fenton’s function [23] is a minimization problem for the inertia of a gear 
train. The function is: 
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The function has an optimum solution at (1.7435, 2.0297) with a corresponding 
function value of 1.74 while the bounds of decision variables are: 101 x  and 02 x . 



 

 

Again, to draw same comparisons, the same random numbers were assigned to both 
types of HS algorithms. Recommended parameters adjusting for both, basic and 
modified HS algorithms, which are run concurrently with same initial harmony memory 
have been demonstrated in Tab. 7. 

Table 7. HS parameters setting for Eason and Fenton’s gear train inertia function  

S hmcr par
 

bw Search Domain of 

 Variable x1 

Search Domain of  

Variable x2 

Pre-selected Number of  

Improvisations 

50 0.9 0.5 1 [0, 10] [0, ∞) 800 

 
The comparison of the identified results for basic and modified algorithms is listed in 

Tab. 8. While basic HS algorithm finds the optimum solution after 411 improvisations, 
a better solution has been obtained after 213 improvisations using the modified HS 
algorithm. This is one of the most important advantages of the proposed algorithm 
which has been demonstrated in given examples.  

Table 8. Comparison of basic and modified HS 

 x1* x2* f(x1*, x2*) Number of Improvisations 

Basic HS 1.71810 2.07941 1.74476 411 

Modified HS 1.76248 2.06761 1.74468 213 

 
The comparison of the convergence histories for each algorithm can be seen in Fig. 4. 

The results of four empirical studies indicate that the proposed HS algorithm can obtain 
better results than basic HS algorithm with much fewer improvisation numbers. 



 

 

 

Fig. 3. (a) convergence of the minimization of the Michalewicz’s Bivariate function by basic HS algorithm; (b) convergence of the 

minimization of the Michalewicz’s Bivariate function by modified HS algorithm 



 

 

 

Fig. 4. (a) convergence of the minimization of the Eason and Fenton’s gear train inertia function by basic HS algorithm; (b) 

convergence of the minimization of the Eason and Fenton’s gear train inertia function by modified HS algorithm 



 

 

5. Conclusions 

The paper introduces a new version of the HS algorithm. This method has been found 
to reduce the maximum number of improvisations, for fast performance convergence. 
The algorithm was tested on four optimization problems, the Rosenbrock’s banana 
function, the Michalewicz’s Bivariate function for n=2 and n=5, and Eason and 
Fenton’s gear train inertia function respectively. The coded algorithm used the same 
settings of operations, same paired comparisons, and the same random number 
generations to provide a fair comparison for basic and modified HS algorithms. Results 
showed there is a significant reduction in the maximum number of improvisations in the 
modified HS algorithm. Also, the new version of the updating technique obtained more 
accurate optimum solutions in far fewer number of improvisations compared with basic 
HS algorithm. 
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