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Abstract 

Distributed Denial of Service (DDoS) attacks have become one of the most serious concerns in the 
cybersecurity domain due to their ability to mimic legitimate traffic. The attack is significantly 
challenging to detect when occurring at the application layer because it exploits genuine request 
patterns, forged headers, automated attack tools, and public proxies to mimic legitimate traffic, 
making detection extremely difficult. This paper reviews signature-based and anomaly-based 
detection techniques utilized by prior studies to detect HTTP DDoS attacks. The review output 
reveals that signature-based detection methods are effective for known attack patterns, while 
anomaly-based detection excels at detecting previously unseen behaviors. However, the signature-
based detection struggles to recognize new attack patterns, unlike anomaly-based detection. Both of 
these detections also experience significant challenges in differentiating between authentic users and 
automated attack tools when public proxies are used. This review concludes that signature-based and 
anomaly-based detection techniques remain inadequate for detecting the attack. This review also 
suggests that future research should focus on a hybrid detection to detect request headers in real-
time and the multi-version HTTP protocol to improve detection accuracy. 
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1. Introduction 
Distributed Denial of Service (DDoS) consists of two main categories, known as 

network and application layer attacks. The application layer attack, known 
explicitly as HTTP DDoS, represents a critical threat to the availability and 
reliability of online services because it directly exploits the application layer where 
web servers deliver content to users. As noted by contemporary studies, the 
significance of this threat lies in its ability to mimic legitimate traffic patterns. 
Consequently, detection of the attack becomes challenging. Therefore, the growing 
sophistication of HTTP DDoS attacks demands urgent academic and practical 
attention. 

At the technical level, HTTP DDoS attacks operate through multiple vectors, 
such as forged request headers, automated attack tools, and the misuse of public 
proxies. More importantly, the existence of these vectors demonstrates that 
adversaries can disguise malicious queries as authentic requests. This situation 
complicates the distinction between benign and harmful traffic. For example, 
automated tools such as LOIC, HOIC, and SlowHTTPTest generate traffic that is 
equal to user-initiated browsing, while proxies further obscure the origin of the 
connection. As a result, conventional detection techniques, particularly signature-
based methods, encounter severe limitations in accurately identifying the attack. In 
addition, the challenge is magnified when encryption protocols, such as HTTPS, 
conceal traffic details. Although encryption secures communication channels, it 
simultaneously provides attackers with a mechanism to deliver malicious payloads 
undetected. Furthermore, the evolving HTTP protocol versions, such as HTTP/2 
and HTTP/3, introduce new attack surfaces, enabling multiplexed and asymmetric 
assaults that overwhelm servers with minimal resources. Thus, the interplay 
between legitimate user behavior and adversarial manipulation highlights the need 
to develop detection techniques that can operate across various versions, encryption 
schemes, and traffic channels. 

This study aims to review existing solutions based on signature-based and 
anomaly-based detection for identifying HTTP DDoS attacks and provide 
recommendations for future directions to effectively detect the attack. The paper 
comprises several sections, with Section 2 serving as the literature review, which is 
divided into subsections numbered 2.1 to 2.8. The discussion and future direction 
are covered in Section 3, while Section 4 covers the conclusion of this review. 
 
 
 
 
 
2. Literature Review  

2.1 Authentic and False Request Headers 
HTTP traffic contains request and response messages [1]. The process of a user 

browsing online content through a web browser is referred to as an HTTP request, 
while the web server's response to these requests is known as an HTTP response. 
The HTTP requests contain request headers generated automatically and will end 
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with a Carriage Return Line Feed (CRLF), which is the line break for each request 
header.  The CR refers to \r, and LF refers to \n, indicating the line break of each 
request header. The existence of \r\n\r\n demonstrates that the headers are complete 
[2]. The last request headers in genuine HTTP requests contain two CRLFs. 
However, during the execution of an HTTP DDoS attack, only a single CRLF exists 
at the end of the last request header [3]. The existence of a single CRLF increases 
the web server's waiting time for an HTTP request to complete the transaction. Due 
to this situation, server resource consumption can significantly increase, leading to 
a web server becoming unresponsive and crashing [4]. Yun, Xie [5] explain that 
request headers are vulnerable components because anyone, including adversaries, 
can modify them to imitate benign HTTP request traffic. Figure 1 illustrates the 
genuine request headers, which include two CRLFs and a single CRLF, generated 
by the HTTP DDoS attack. 
 
 
 
 
 

  

 
 

 

 

 

 
Figure 1: Genuine and False Request Headers 

The authentic CRLF in the final request headers can also be represented as binary 
code, such as 0d 0a 0d 0a (CRLF, CRLF) (Nithyanandam & Dhanapal, 2019). 
Nevertheless, when the HTTP DDoS attack was executed, it was found that only 0d 
0a (CRLF) was present in the request headers. Figure 2 demonstrates the binary 
code for the HTTP DDoS attack. 

 
 
 
 

 
 
 

 
 
 

Figure 2: Forged Binary Code 
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2.2 Attack Channels via Automation and Proxies  
Automated attack tools enable hackers to specify a set of URLs for launching 

HTTP DDoS attacks. [6]. Automated attack tools can generate random authentic 
request headers, making it difficult to recognize the attack pattern. Dhanapal and 
Nithyanandam [7] observed that request headers formed by hackers comprised 
genuine user agents, incorrect URLs, and repeated URLs. The existence of 
automated attack tools like HOIC, LOIC, Golden Eye, Hulk, DDOSIM, Rudy, and 
SlowHTTPTest [4, 7-9], which are shared through open channels like GitHub and 
specific online communities in the dark web, allows hackers to keep on changing 
and enhancing the code to be more sophisticated. Sangodoyin, Akinsolu [9] 
identified that the existence of sophisticated tools, the continuous modification of 
attack toolkits, and the development of automated attack tools contribute to the 
difficulty of detecting attacks [10].  
 

Aside from the scenario explained above, hackers can exploit the widespread 
use of public proxies by misusing the service to launch HTTP DDoS attacks. In this 
circumstance, hackers can execute automated attack tools from a single machine to 
instruct public proxies to generate traffic aimed at the victim's web server. 
Consequently, a substantial amount of HTTP requests will be generated through 
public proxies, and the Server will collapse due to being overloaded. Due to proxies 
mediating between users and web servers, identifying authentic users and HTTP 
DDoS attacks while accessing and attacking a web server is complicated. To utilize 
a proxy, users must successfully establish a Transmission Control Protocol (TCP) 
connection. Once done, the proxy will route the user request to a web server for 
processing. Figure 3 illustrates the TCP handshake process between the client and 
proxy, highlighting the challenge in differentiating between legitimate users and 
HTTP DDoS attacks. This complexity arises from the fact that such attacks can be 
initiated by either the user or the hackers who organized the attack. 

 

 
 
 
 
 

 
 
 
 
 
 
 
 
 

 
Figure 3: Proxy Handshake between Client and  

Web Server Al-Dailami, Ruan [11] 
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2.3 HTTP Version 
Certain web servers still utilize HTTP 1.1 due to current technology constraints. 

Chatzoglou, Kouliaridis [12] highlighted that a few web servers, notably IIS 10, had 
trouble with HTTP version 3. As a result, they switched to HTTP version 2 or HTTP 
version 1.1 for client-server communication. HTTP versions 2 and 3 can perform 
better than HTTP version 1.1. HTTP version 2 utilizes a compression method 
known as HPACK to reduce the size of data, improve web performance, and 
eliminate redundant information in HTTP header packets. On the other hand, this 
benefit significantly increased the web server's workload, as compressed headers 
must be decompressed whenever HTTP/2.0 connects to HTTP/1.1 for data 
exchange. Since HPACK compression allows users to generate more HTTP 
requests using the same bandwidth, malicious actors can immediately overwhelm a 
web server. HTTP version 2 introduces a new DDoS attack vector called a 
Multiplexed Asymmetric attack, which can overwhelm web server resources by 
utilizing limited machines to generate the attack traffic [13]. HTTP DDoS attacks 
launch over various HTTP protocol versions. However, the current proposed 
detection method is limited to HTTP 1.1. It is time for researchers to develop 
detection algorithms capable of inspecting HTTP requests across all versions. 
Today's hackers are highly skilled and well-equipped with various automated tools, 
enabling them to launch successful attacks against businesses and governments [14, 
15]. NSFOCUS [16] highlights that DDoS mitigation techniques must evolve in 
response to the emergence of new attack vectors. Figure 4 demonstrates the 
distribution of HTTP versions. 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 4: Distribution of HTTP versions [17] 

 
 

2.4 HTTP Traffic Encryption  
Encryption has become the standard for most Internet traffic due to growing 

concerns about privacy and security. When it comes to encrypting conversations, 
HTTPS will naturally employ the Transport Layer Security (TLS) protocol. TLS is 
a widely used protocol for ensuring the privacy and integrity of data transmitted 
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across TCP connections. According to Moura, Lopes [18], the protocol enables 
server/client applications to communicate securely over a channel, thereby 
preventing eavesdropping, tampering, and message forgery. TLS has emerged as 
the predominant end-to-end encryption standard for transmitting web information 
[11]. This protocol first appeared under the name Secure Sockets Layer (SSL), and 
the final 'S' in HTTPS stands for 'Secure', demonstrating in the web browser that the 
communication is secure [18]. To establish a secure connection, both parties must 
initiate a TCP handshake, exchanging the required information to construct an 
encrypted channel and encrypt data during transmission [19]. 
 

SSL/TLS completely encrypts the data during transmission, leaving the data, 
including request headers, vulnerable to attacks. Xiao, Zhang [20] stated that 
governments, enterprises, and banks have begun to deploy HTTP over SSL/TLS to 
protect the security of sensitive data during transmission. As a result, hackers 
construct forged request headers that appear identical to authentic ones to launch 
HTTP DDoS attacks over encrypted channels, due to the lack of a verification 
method for the legitimacy of these headers. Zhao, Peng [21] highlight that the 
complexity of identifying HTTP DDoS attacks stems from the fact that the attack 
utilizes authentic request headers. As a result, it is tricky to differentiate the 
authenticity of the traffic in the attack [22, 23]. Figure 5 illustrates the 
communication between the client and Server in establishing a secure channel, 
indicating that the data is only encrypted during transfer.  

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

Figure 5: Secure Channel Communication Between Clients 
and Server [19] 

 

Data transmitted over SSL/TLS is encrypted and protected to ensure that 
communications between the client and Server are not intercepted by hackers and 
modified during transmission [20]. However, Di Martino, Quax [24] emphasized 
that the protocol is vulnerable to a Man-in-the-Middle (MitM) attack if a client does 
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not verify the security certificate during the TLS handshake, as hackers have the 
ability to create a certificate that is similar to the original one, enabling them to 
establish a connection with a server and decode the transmitted data. According to 
Alashwali, Szalachowski [25], hackers can eavesdrop passively, inject malicious 
traffic, modify, drop, replay, or redirect messages in an HTTPS channel. Due to the 
aforementioned factor, hackers execute the MitM attack as the initial steps to 
observe authentic request headers and construct the same headers to launch HTTP 
DDoS attacks. Consequently, the attack traffic appears genuine and is difficult to 
differentiate because it generates forged request headers identical to the authentic 
version. A potential approach to resolving the mentioned issue is to encrypt the 
request headers before transmission, thereby mitigating the risk of request header 
forgery to prevent the attack from replicating the headers. Figure 6 demonstrates the 
activity done by hackers to launch attack over HTTPS channel. 

 
 

 
 

 
 

 
 

 
 
 
 
 
 
 
 
 
 
 

 
Figure 6: Activity Done by Hackers to Sniff Traffic in HTTPS Channel 

2.5 Related Work Based on Signature-Based Detection Algorithm  
The signature-based approach relies on network behavior and is also referred to 

as misuse, knowledge-based, rule-based, and pattern-based detection [26]. The type 
of detection relies on knowledge-based databases and a defined set of policies for 
implementation. Numerous studies have employed signature-based detection for the 
rapid identification of HTTP DDoS attacks. For instance, Praseed and Thilagam [6] 
utilize HTTP request headers to develop an Early Detection Module (EDM) for 
detecting DDoS attacks. The proposed work supervises incoming requests to verify 
that the source connection is non-repetitive and contrasts the traffic with the 
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signature database to determine the traffic status. An alternative method for 
identifying the attack involves redirecting internet traffic to identify the hacker, as 
proposed by Gonçalves et al. (2022). 
 
 Mohammadi, Lal [4] proposed a detection that was implemented as a defense 
module on Software-Defined Networking (SDN) to recognize HTTP DDoS attacks. 
SHFD extracts the source IP address from the SYN packet and saves it onto a list 
known as HostReqList. The incoming traffic will be detected as suspicious if the 
source IP address fails to deliver complete request headers within a specified time 
window. Park, Kim [27] also deploys SDN to detect HTTP DDoS, categorized as 
flooding attacks (SDN). The scholar uses a web server to inspect incoming traffic, 
forwarding it to the SDN controller and blocking the connection if the incoming IP 
address is suspicious. 
 

 

 
Another idea for detecting the attack is to use page separation and resource 

allocation strategies introduced by Patidar and Somani [28]. It has a function called 
allowlist, where requests from this source are deemed authentic because traffic from 
this section uses an authentication channel once credentials are provided. Rao Varre 
and Bayana [29] suggested using a request rate monitor to control the amount of 
incoming traffic and analyze authentic and malicious data. Every request rate is 
monitored in accordance with the server capacity allocated for each request. The 
traffic monitoring and rate limit concept is applied not only by Rao Varre and 
Bayana [29] but also by Zhao and, who introduced the concept of behavioral utility 
to portray the network pattern. The study suggests that the network status change 
caused by the attack can be characterized as attack behavior. The studies utilize load 
balancing and rate limits to control the maximum number of connections across 
different attack scales, and the exact mechanism is employed to determine the 
threshold status.  
 

2.6 Related Work Based on AI Machine Learning Detection Algorithm  
Artificial Intelligence (AI) and Machine Learning (ML) have become known as 

crucial technologies in cybersecurity, particularly in the detection of HTTP DDoS 
attacks. Artificial Intelligence and Machine Learning offer extensive capabilities by 
analyzing vast amounts of network data, identifying patterns, and distinguishing 
between normal and anomalous behaviors. Sarker, Furhad [30] stated that artificial 
intelligence utilizes machine learning models, including traditional models such as 
Naive Bayes and decision trees. Al-gethami and Aljuhani [31] state that diverse 
machine learning models, such as K-Nearest Neighbors (KNN) and Random Forest, 
can be utilized to identify HTTP DDoS attacks. These models are often used to 
analyze network traffic patterns and identify anomalies. Research conducted by 
Alghazzawi, Bamasag [32] demonstrated that combining various machine learning 
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models, such as Convolutional Neural Networks (CNN) and Bidirectional Long 
Short-Term Memory (BILSTM), can substantially enhance detection precision. 

 

Mohammadi, Lal [33] propose Software Defined Network (SDN) and machine 
learning algorithms to detect and mitigate HTTP flooding attacks. They utilize an 
SDN controller to monitor the HTTP connections and document each connection in 
the log table. All HTTP flows at the end of a time window are inspected to detect 
the presence of the attack. Feng, Li [34] suggests that a reinforcement-learning-
based model can detect and mitigate HTTP DDoS attacks. The module is designed 
to train various metrics related to server load, dynamic user behavior, and the victim 
network load. A similar detection matrix was suggested by Praseed and Thilagam 
[23] using a two-phase detection approach that incorporates server logs and access 
traces to capture the behavioral dynamics of legitimate users in the form of 
annotated Probabilistic Timed Automata (PTA). The detection phase is designed to 
intercept and examine all incoming connections, detecting traffic patterns that do 
not conform to the learned model. Another equivalent technique introduced by 
Abubakar, Aldegheishem [35] adopted traffic behavior analysis, packet header 
validation, protocol validation, and traffic matching with datasets.   
 

 Yu, Yu [36] propose a semi-supervised machine learning approach that 
combines spectral clustering and random forest. The study utilized a dataset 
containing seven discrete feature variables: guest_login, logged_in, land, flag, 
is_host_login, service, and protocol_type. Beitollahi, Sharif [10] also analyzed 
variables available in the dataset, utilizing a Genetic Algorithm (GA) for data 
gathering, cleaning, normalization, and feature selection. The proposed detection 
method distinguishes malicious requests based on features available in the dataset, 
such as protocol type, the percentage of connections with SYN errors, and the 
percentage of connections that use the same and different services. Table 1 indicates 
the summary of the proposed detection by prior studies. 
  



Open International Journal of Informatics (OIJI)                                               Vol. 13  No. 2 (2025) 
 

 

10 
 

_________________________________________________________ 

* Corresponding author. abdulghafar@utm.my 
 

Table 1: Detection Algorithm Proposed by Prior Studies 
No. Reference  Dataset/Automated Tools Method Used Technique 

1. Praseed and Thilagam [6] � SDSC-HTTP  

� CLARKNET-HTTP 

� HTTP request patterns  

� Sample Entropy 
Signatured-Based 

2. Mohammadi, Lal [4] � Slow HTTP Test � Entropy And Hellinger Distance Signatured-Based  

3. Rao Varre and Bayana [29] � Botnet 

� Resource Request Rate Monitor 

� Release Request for Process 

� Invisible Challenge 

Signatured-Based  

4. Gonçalves, Couto [37] � Bonesi � Server Redirection Signatured-Based  

5. Park, Kim [27] � HTTP DDoS flooding � CAPTCHA Signatured-Based  

6. Patidar and Somani [28] Generate traffic via Ubuntu OS � Page separation 

� Resource allocation 
Signatured-Based  

7. Zhao, Peng [21] 
� Burp Suite 

� LOIC  

� JMeter 

� Network throughput rate 

� TCP data segment transmission rate 

� IP datagram transmission rate 

� Transaction failure rate 

� Average traffic arrival time 

� Server CPU utilization 

Signatured-Based  

8. Beitollahi, Sharif [10] � NSL-KDD 

� Radial Basis Function 

� Cuckoo Search Algorithm 

� Genetic Algorithm 

Anomaly-Based 

9. Mohammadi, Lal [33] � Slow HTTP Test 

� KNN 

� Naive Bayes 

� Decision Tree 

� Random Forest 

Anomaly-Based 

10. Praseed and Thilagam [23] � SDSC-HTTP  

� CLARKNET-HTTP 

� Probabilistic Timed Automata (PTA) 

� Suspicion Scoring Mechanism 
Anomaly-Based 

11. Yu, Yu [36] � NSL-KDD � Semi-Supervised Learning  Anomaly-Based 
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No. Reference  Dataset/Automated Tools Method Used Technique 

� Spectral Clustering  

� Random Forest 

12. Abubakar, Aldegheishem [35] 
� TCP Replay  

� LOIC 

� JMeter 

� Traffic Behaviour Analysis 

� Packet Header Validation 

� Protocol Validation  

� Traffic Matching  

Anomaly-Based 

13. Feng, Li [34] 
� Slowloris 

� HULK 

� DDos Simulator 

� Behavioural Information 

� Network Load 

� System Load 

� Reinforcement Learning 

Anomaly-Based 
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2.7 Complexity Detecting HTTP DDoS Through Public Proxies 
Identifying HTTP DDoS attacks becomes more complex when public proxy 

providers use various proxy header names to indicate the origin of traffic from 
proxies. The inconsistency in the public proxy header's name complicates the 
detection of the attack, as the Server, the receiver, cannot determine whether the 
source connection originates from a proxy or a direct connection (without proxies). 
Another circumstance that produces complexity is that the web servers are 
specifically programmed not to recognize the source connection, whether from a 
web browser or automated attack tools. According to Díaz-Verdejo, Estepa Alonso 
[22], distinguishing authentic HTTP requests is extremely challenging due to the 
dynamic and robust structure of web servers. For this reason, the method used by 
prior studies, which employs signature-based detection, is ineffective in detecting 
the attack. For instance, the proposed solution by Park, Kim [27] increases server 
workload because it uses the web server to inspect incoming traffic and forward it 
to the SDN controller, which blocks the connection if the incoming IP address is 
suspicious. Chatzoglou, Kouliaridis [12] noted that significant incoming traffic can 
lead to CPU exhaustion on the Server, while Patidar and Somani (2021) observed 
that a genuine user requires 6,000–7,000 milliseconds per request. As a 
consequence of this situation, the time required for HTTP DDoS attacks increases 
when the Server receives a large number of requests, leading to longer response 
times and potential timeouts. 
 

Patidar and Somani [28] suggest strategies for page separation and resource 
allocation. Compared to others, the primary advantage of this method is that it can 
distribute traffic across multiple servers, thereby reducing the workload. However, 
the proposed solution cannot categorize traffic from different channels, particularly 
from proxies, because their scattered locations make them challenging to identify. 
As a result, allocating resources could be inaccurate. Aside from that, resource 
allocation strategies face a challenge in handling large amounts of traffic because 
public proxies can generate substantial traffic on a large scale. Consequently, this 
further complicates the identification process, as detection devices must scan every 
bit of traffic in a vast amount in sequential order. Mohammed Sharif and Beitollahi 
[38] explained that HTTP DDoS attacks specifically target application resources 
with high request rates.  
 

 Rao Varre and Bayana [29] and Zhao, Peng [21] utilize a request rate monitor 
to detect the attack. Although the method has the benefit of observing a high request 
rate, it presents a significant drawback. Legitimate users are unable to access web 
content because authentic users and malicious actors utilize the same public IP 
Address, resulting in a higher request rate and a blocked connection. Another study 
with the same limitation is Praseed and Thilagam [6], as the proposed work detects 
a malicious request if the source connection repeatedly generates traffic against the 
web server at a higher rate. HTTP DDoS attacks through public proxies are identical 
to the flash crowd attack, as they appear to be legitimate traffic. Rizvi, Mirkovic 
[39] noted that the attack employs authentic traffic from compromised hosts. The 
proposed work by Mohammadi, Lal [4] highlights a limitation in identifying the 
source connection, whether it is from public proxies or vice versa.  Despite Sree and 
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Bhanu [40] stating that request headers could be used to detect attacks because the 
access log contains headers, the request headers generated by a web browser 
differed from those generated by public proxies. 
 

The machine learning model also has drawbacks that require further attention, as 
it relies on a training model where the dataset serves as the primary source of the 
model [41]. The proposed solution by Beitollahi, Sharif [10], Praseed and Thilagam 
[23], Yu, Yu [36] is unable to detect recent attack patterns such as HTTP DDoS 
originating through public proxies due to the use of outdated datasets. Díaz-Verdejo, 
Estepa Alonso [22] state that the attack in the existing dataset is limited and 
outdated.  
 

Feng, Li [34] employ machine learning methods that utilize tools such as 
Slowloris, HULK, and DDoS Simulator, rather than relying solely on datasets. Even 
though these studies employed various methods related to server load, dynamic user 
behavior, and victim network load, they are still incapable of detecting HTTP DDoS 
launches over proxies, as the tools cannot generate HTTP DDoS traffic through 
them. Mohammadi, Lal [33] extends their work from signature-based detection to 
anomaly detection but still struggles to distinguish between proxies used solely to 
access the web server's content and those employed by malicious actors to overload 
the web server with fake traffic. This circumstance, due to limitations in using 
detection attributes such as source and destination IP addresses and the port number, 
is insufficient for detecting HTTP DDoS execution over proxies. 
 

2.8 Limitations of Signature and Anomaly Detection  
After rigorous examination, it was discovered that signature-based detection [4, 

6, 21, 27-29, 37] and anomaly detection [10, 23, 33-36] experience complexity in 
detecting forged request headers, as the headers can be created through automated 
attack tools and appear genuine once executed and delivered to a web server. The 
proposed solution by Rao Varre and Bayana [29] and Park, Kim [27] almost 
addresses the issue of identifying the source connection. Nevertheless, it relies on 
human interaction, which complicates user access. This could potentially lead to 
inaccurate responses from users, making it unsuitable for all levels of users, 
especially the elderly or those with limited computer skills.  

 
The proposed work by Mohammadi, Lal [4] can also partially detect the source 

identity, which may originate from automated attack tools or a web browser, as it 
identifies incoming connections as HTTP DDoS attacks if the source IP address 
delivers incomplete request headers. However, the proposed work does not consider 
detecting the use of automated attack tools that hackers can use to construct large-
scale attack volumes. Due to this, the detection is unable to distinguish the platform 
used by the source connection. Bialczak and Mazurczyk [42] emphasized that 
applications or programs beyond web browsers can utilize the HTTP protocol. For 
this reason, hackers employ automated attack tools that follow the same protocol to 
generate a significant amount of traffic, thereby overwhelming a web server. Given 
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these circumstances, it is essential to differentiate between automated attack tools 
and web browsers to quickly recognize the attack before the web server is 
overwhelmed by a significant number of connections made by hackers. 
 

Automated tools, web browsers, and forged request headers are interconnected, 
as hackers can use automated attack tools to mimic the request headers constructed 
by web browsers, thereby executing HTTP DDoS attacks. Consequently, the 
detecting devices become confused and allow entry to a web server. Additionally, 
hackers use automated attack tools to construct forged request queries, employing 
ASCII characters similar to those generated by legitimate users through web 
browsers. Figure 7 illustrates the code structure of automated attack tools using 
these characters, while Table 2 lists the ASCII characters.  
 
 
 
 
 
 
 
 
 
 

Figure 7: Automated Attack Tools Code with ASCII Characters 
 
 

Table 2: ASCII Character 
Type ASCII Character  Symbol Generate 

Lower Case 97 and 122 a-z 
Upper Case 65 and 90 A-Z 
Numeric 48 and 57 0-9 
Special character  33 and 57 !"#$%&`()*+'-./ 

 
 
Based on the limitations elaborated in Sections 2.7 and 2.8, a gap that needs to 

be addressed is apparent. Due to this circumstance, detecting HTTP DDoS attacks 
executed over public proxies and distinguishing forged request headers is essential 
for future research. Aside from that, it is also vital to differentiate between 
legitimate web browsers and automated attack tools when accessing and attacking 
web servers in real time. As a result, early detection can be achieved before the 
attack crashes a web server with a substantial number of connections.  
 
 
 
3. Discussion and Future Direction 

The difficulty in detecting HTTP DDoS attacks stems from the fact that the 
forged request headers generated by the attack are identical to authentic request 
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headers, enabling them to evade detection. Moreover, the attack originated from 
various points, including automated attack tools and public proxies, complicating 
its identification. Although various methods have been applied, research into 
detecting HTTP DDoS executed over public proxies and identifying forged request 
headers remains a significant research gap. Another critical issue that requires 
serious attention is the inability of recent detection methods to differentiate between 
genuine web browsers and automated attack tools when accessing and attacking 
web servers. The existence of this problem has a detrimental impact, as a web server 
is forced to process both legitimate and illegitimate HTTP requests concurrently. 
As a result, the web server receives a heavy workload and crashes.  

 

Proxies function as intermediaries between users and web servers, enabling 
individuals to gain a high-speed connection and browse online content hosted by a 
server. However, hackers can connect to public proxy servers to conceal their IP 
addresses and execute HTTP DDoS attacks. As a result, it provides a layer of 
anonymity, making it difficult for defenders and authorities to identify the 
originality of the traffic because genuine users and hackers use the proxy 
simultaneously. Hackers may utilize multiple public proxies in rotation, switching 
between them during attacks, which can complicate the ability of security devices 
to block or consistently detect malicious traffic. Furthermore, the public proxies are 
scattered, the services are free, and no authentication or subscription is required, 
making this platform the first choice for launching an attack. HTTP DDoS attacks 
conducted through public proxies are challenging to differentiate due to the 
similarity in internet traffic, as users often utilize public proxies to access online 
content, while hackers exploit them to launch HTTP DDoS attacks. This increases 
the need for future studies to discover an effective solution to address these issues. 
 
 

Another problem that requires serious attention by future studies is the request 
header forgery, which is executed through HTTP DDoS. The request headers 
contain information about the request or the client making the HTTP request. It 
provides essential metadata for the Server to process the request appropriately. The 
headers typically include details such as the type of browser or client, the type of 
data the client can accept, and information about the content being sent. However, 
hackers can modify the headers, making the attack traffic appear authentic and 
difficult to distinguish from legitimate traffic. This problem has been partially 
addressed by Mohammadi, Lal [4], who proposed a solution to detect HTTP DDoS 
attacks by measuring the number of headers generated by the source requester. 
However, incomplete headers are not the only patterns produced by the attack. 
Praseed and Thilagam [6] highlighted that the attack is strikingly similar to 
legitimate traffic and difficult to detect.  

 

According to Park, Kim [27], the attack will overwhelm a web server because of 
the significant number of HTTP requests. Differentiating between automated attack 
tools and genuine web browsers is a complex task. Web servers are designed to 
ignore the platform used by the requester, which can be either automated attack 
tools or web browsers, making the web server vulnerable to HTTP DDoS attacks. 
Thus, identifying the platform from which the source connection originates requires 
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further exploration to detect the attack early, before the web server is overloaded by 
the substantial traffic it generates.  
 
 
4. Conclusion  
 

This study assessed the effectiveness of signature-based and anomaly-based 
methods in detecting HTTP DDoS attacks. Signature-based detection can promptly 
identify attack patterns; however, it lacks the ability to react to emerging threats. 
Anomaly-based detection can identify novel behaviors; nevertheless, it frequently 
produces false positives, leaving it less trustworthy. Identifying the use of forged 
request headers, encrypted HTTPS traffic, automated attack tools, and public 
proxies is challenging. These malicious tactics generate attack traffic that mimics 
legitimate requests, causing servers to exceed their limits and ultimately leaving 
them unable to respond due to the high load they receive. 
 

Ultimately, the synthesis of prior studies indicates that addressing the limitations 
of existing methods requires innovative, layered defenses. Therefore, future 
research should prioritize the development of hybridized, intelligent detection 
systems that can withstand adversarial manipulation while sustaining the resilience 
of critical web infrastructures. This study thus contributes by clarifying the gaps in 
current approaches and by charting a path toward more reliable defenses against 
HTTP DDoS attacks. 
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