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Abstract 

The increasing energy consumption issues in urban areas demand innovative solutions for more 

efficient and sustainable energy management. This study, conducted in Sukoharjo, Central Java, 

Indonesia, aims to develop a predictive analysis model for urban energy consumption using data 

mining techniques within the context of Smart City development. The research method involves 

collecting and cleaning data from IoT sensors, smart meters, and historical data, followed by the 

application of clustering techniques, regression, and Random Forest prediction algorithms to build 

the prediction model. The results indicate that factors such as energy rates, location, time, type of 

energy users, population density, historical energy consumption, and environmental temperature 

play significant roles in influencing energy consumption. The predictive model developed using 

Random Forest performs well, with a Mean Absolute Error (MAE) of 579.10 and a Root Mean 

Squared Error (RMSE) of 659.71, indicating the model's accuracy in predicting energy 

consumption. Feature analysis shows that energy rates, district location, and time have the highest 

importance levels in the prediction model. This research provides valuable insights for energy policy 

planning in major cities and contributes to the development of more efficient and environmentally 

friendly Smart Cities. 
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1. Introduction 
The issue of rising energy consumption in urban areas presents a serious 

challenge for many cities around the world. Increased population, economic growth, 

and industrialization have driven higher energy demand, which in turn places 

significant pressure on existing energy infrastructure[1], [2]. In many cases, this 

infrastructure is not designed to handle the growing load, leading to severe problems 

such as power outages, imbalances in energy distribution, and broader 

environmental damage due to increased carbon emissions [3], [4]. Moreover, heavy 

reliance on fossil fuels exacerbates global environmental issues, particularly related 

to climate change [5]. 

In the context of urban sustainability, the concept of Smart City has emerged as 

a potential approach to address these challenges. A Smart City relies on information 
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and communication technology (ICT) to enhance operational efficiency and 

manage various city resources, including energy [6]. Efficient energy use and 

integrated management are key focuses in Smart City development, aiming to create 

more environmentally friendly, energy-efficient, and sustainable urban 

environments [7]. However, these efforts face various challenges, one of which is 

how to leverage data generated from various city systems to make more informed 

decisions about energy management [8], [9]. 

Modern cities currently generate vast and complex data from multiple sources, 

such as sensors, smart meters, and Internet of Things (IoT) devices [10]. This data 

contains crucial information about energy consumption patterns, energy 

distribution, and factors influencing energy use across different urban sectors [11], 

[12]. Unfortunately, most of this data is not optimally utilized due to a lack of 

analytical tools capable of processing it efficiently [13]. Data mining, as a branch 

of data science, holds great potential to address this issue [14]. By applying data 

mining techniques, the abundant data can be transformed into useful information, 

such as energy consumption patterns, future energy demand predictions, and the 

identification of anomalies or inefficiencies in energy use [15], [16]. 

Data mining, as the process of uncovering hidden information from large 

datasets, can be used to predict future energy consumption, identify hidden trends, 

and provide deep insights into energy consumption behavior in urban areas [17]. 

Predictive analysis generated from data mining is highly valuable for governments 

and energy providers to make more efficient planning decisions regarding energy 

distribution and use [18], [19]. By understanding when and where energy demand 

will peak, energy managers can optimize distribution and avoid resource waste. 

Furthermore, city governments can design more targeted policies to promote energy 

efficiency based on more accurate data on consumption patterns [20], [21]. 

Despite its significant potential, applying data mining in the context of urban 

energy consumption also faces several technical challenges. These challenges 

include the quality and completeness of the data obtained, the complexity of the 

algorithms used, and the limitations of technology infrastructure in some cities, 

particularly in developing countries [22]. Inaccurate or incomplete data can lead to 

erroneous analysis results, which can ultimately result in poor decision-making. 

Additionally, data mining requires adequate technological infrastructure and human 

resources with expertise in processing and analyzing large-scale data [23]. 

In Indonesia, major cities such as Jakarta and Surabaya have begun initial steps 

toward Smart City development with a focus on energy efficiency [24]. However, 

the application of data mining technology for energy consumption analysis is still 

relatively new and requires further research for optimization. Recent studies on 

Smart City initiatives in Indonesia emphasize the need for data-driven approaches 

to improve energy management and sustainability [25]. Therefore, studies on the 

application of data mining in urban energy consumption analysis are crucial, not 

only to provide a better understanding of energy consumption behavior but also to 

support the development of more sustainable energy policies. 

 

2. Methodology 
This research employs the Random Forest prediction method to analyze and 

forecast energy consumption in urban areas. The data used is sourced from various 

platforms, including IoT sensors, smart meters, and historical energy usage data 
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across several urban sectors, such as residential, commercial, and industrial. The 

study follows several key stages. First, data collection and cleaning are performed 

to ensure the quality and completeness of the data for analysis. Afterward, the 

cleaned data is analyzed using clustering techniques to group energy consumption 

patterns based on characteristics such as location, time, and user type. Subsequently, 

the Random Forest algorithm is used to develop a model for predicting future energy 

consumption. Random Forest was chosen due to its ability to handle large datasets 

with numerous variables, its robustness against overfitting, and its capability to 

model complex relationships between input features and target variables. 

Additionally, Random Forest provides a measure of feature importance, allowing 

for the identification of key factors affecting energy consumption. The model is 

evaluated using metrics such as Mean Absolute Error (MAE) and Root Mean 

Squared Error (RMSE) to measure prediction accuracy. The results of this research 

are interpreted and further analyzed to provide policy recommendations that can 

support more efficient energy management in the development of Smart Cities. 

 

3. Results and Discussion 
This study utilizes several key variables to develop a predictive model for urban 

energy consumption within the context of Smart City development. The first 

variable is Time (Month), which indicates the month when the data was collected. 

This variable is important because energy consumption can vary with seasons or 

times of the year. Next, Location (District Code) represents the code for different 

districts or regions. The location factor is crucial because each area has different 

energy consumption characteristics based on its infrastructure, climate, and local 

energy policies. Temperature (°C) measures the environmental temperature in 

degrees Celsius. Temperature directly affects energy consumption, particularly in 

the use of heating or cooling systems, which increases during extreme hot or cold 

conditions. 

Population Density (per sq km) measures the number of people per square 

kilometer. Population density correlates with energy needs in a region, as areas with 

higher populations tend to consume more energy for both residential and public 

facilities. Energy User Type categorizes the type of energy users: 1 for residential, 

2 for commercial, and 3 for industrial. Each type of user has different energy 

consumption patterns, with the industrial sector generally requiring more energy 

compared to the residential sector. Energy Tariff (USD per kWh) indicates the 

energy rate in US dollars per kilowatt-hour. Energy tariffs influence consumption 

patterns, where higher rates might encourage more efficient energy use by 

consumers. Historical Energy Consumption (kWh) represents past energy usage 

data in kilowatt-hours, which helps predict future energy consumption based on 

existing patterns. Finally, the target variable, Energy Consumption (kWh), 

measures the actual total energy consumption in kilowatt-hours, which is the 

primary focus of the analysis and prediction in this study. 
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Table 1. Research Data 

Time 

(Month) 

Location 

(District 

Code) 

Temperature 

(°C) 

Population 

Density 

(per sq 

km) 

Energy User 

Type 

(1=Residential, 

2=Commercial, 

3=Industrial) 

Energy 

Tariff 

(USD 

per 

kWh) 

Historical 

Energy 

Consumption 

(kWh) 

Energy 

Consumption 

(kWh) 

6 3 34,65 3901,02 3 0,295 1274,08 4233,44 

1 8 27,03 3005,3 1 0,224 7722,95 4595,49 

4 3 34,65 4824,33 2 0,209 1833,37 3716,48 

12 1 29,07 3575,96 2 0,271 2957,05 7976,98 

4 1 31,09 2695,42 1 0,249 7743,29 9335,92 

8 5 20,59 3425,57 1 0,196 7585,24 3927,79 

10 6 24,24 1076,77 1 0,235 1410,53 9575,84 

4 6 21,8 2206,3 3 0,221 2882,41 1125,54 

6 7 24,44 3640,69 2 0,243 3582,24 5801,19 

3 9 21,78 2160,31 3 0,194 7095,37 3741,24 

 

The data in Table 1 used in this study provides insights into various factors 

affecting energy consumption in urban areas, particularly in the study area located 

in Sukoharjo, Central Java, Indonesia. The data was obtained through the recording 

of information using Internet of Things (IoT) devices, including sensors to capture 

real-time data such as temperature and energy consumption via temperature sensors 

and smart meters. Geographic Information Systems (GIS) were utilized for location 

and population density data, while databases were used to record the data, and the 

Python programming language was employed to manage and process data such as 

energy tariffs and consumption.  

Time (Month) indicates that energy usage varies throughout the year, with 

certain months, such as the 6th and 12th months, recording high consumption. This 

suggests the presence of seasonal factors influencing energy usage, such as extreme 

temperatures or specific activity patterns. Location (District Code) reflects 

geographical differences between regions, each with distinct energy consumption 

characteristics. Areas with higher population density, as shown in Population 

Density (per km²), tend to require more energy to support residents' activities. For 

example, a district with a density of 4,824 people per km² tends to have higher 

energy consumption compared to a district with lower density. 

Temperature (°C) also plays a significant role. Higher temperatures, such as 

34.65°C, tend to increase energy usage, especially for air conditioning. Energy User 

Type indicates that commercial and industrial users consume significantly more 

energy than residential users due to their higher demands. Energy Tariff (USD per 

kWh) and Historical Energy Consumption (kWh) also play crucial roles. Higher 

energy tariffs can influence consumption patterns, although the data shows that 

consumption remains high in some districts despite high energy tariffs. This 

interpretation provides valuable insights for future energy policy planning to 

support the development of efficient and sustainable Smart Cities. 

Data preprocessing has been completed. The independent features (X) and the 

target variable (y) have been separated. The data has been split into training and 

testing sets. 
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Table 2. Training Data and Testing Data Size 

Training data size   : 8,7 

Testing data size : 2,7 

 

The data above shows the division of data sizes between the training and testing 

datasets in a model. The training data size is 8.7, indicating the proportion of data 

used to train the model, while the testing data size is 2.7, reflecting the proportion 

of data used to evaluate the model's performance. This comparison indicates that 

the majority of the data is allocated for the training process, with a smaller portion 

reserved for evaluation. This allocation is crucial to ensure that the model has 

sufficient data to learn while also having adequate data to measure its accuracy. 
 
model = RandomForestRegressor(n_estimators=100, random_state=42) 

model.fit(X_train, y_train) 

 

The code above demonstrates the creation and training of a Random Forest model 

for regression. The model is initialized using `RandomForestRegressor` with the 

parameter `n_estimators=100`, meaning the model uses 100 decision trees in its 

random forest, and `random_state=42` to ensure consistent results with each 

execution. Next, the model is trained with the training data (`X_train` and `y_train`) 

using the `fit()` method. This process allows the model to learn patterns from the 

training data, enabling it to predict values on previously unseen data. 
 
y_pred = model.predict(X_test) 

 

The code is used to generate predictions from the trained Random Forest model. By 

using the `predict()` method, the model processes the test data (`X_test`) to produce 

predicted values (`y_pred`). This process allows for the assessment of the model's 

performance by comparing the predicted results with the actual values in the test 

data. This step is crucial for evaluating how well the model can predict unseen data 

and for measuring its accuracy and effectiveness. 
 
mae = mean_absolute_error(y_test, y_pred) rmse = 

np.sqrt(mean_squared_error(y_test, y_pred)) 

 

The code above is used to evaluate the performance of the regression model. `mae 

= mean_absolute_error(y_test, y_pred)` calculates the Mean Absolute Error 

(MAE), which measures the average absolute difference between the predicted 

values and the actual values in the test data (`y_test`). Meanwhile, `rmse = 

np.sqrt(mean_squared_error(y_test, y_pred))` calculates the Root Mean Squared 

Error (RMSE), which measures the square root of the average squared errors. MAE 

provides a measure of the average absolute error, while RMSE emphasizes larger 

errors, offering deeper insights into the model's accuracy. 

Model evaluation completed: 

 

 

 

Table 3. MAE and RMSE Testing Results 
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Mean Absolute Error (MAE) : 579.0991000000004 

Root Mean Squared Error (RMSE) : 659.7122856238618 

 

The data in Table 3 above presents the evaluation results of the regression model 

using two error metrics. The Mean Absolute Error (MAE) of 579.10 indicates the 

average absolute difference between the predicted values and the actual values, 

providing a general overview of the model's accuracy. Meanwhile, the Root Mean 

Squared Error (RMSE) of 659.71, which is the square root of the average squared 

errors, places greater emphasis on larger errors. Both metrics assist in assessing the 

model's performance, with MAE offering a measure of average error and RMSE 

highlighting the impact of larger errors. 

Feature Importance for each feature used in the model: 

 

Table 4. Feature Importance of Each Feature 

 Feature   Importance 

5 Energy Tariff (USD per kWh)     0.276745 

1 Location (District Code)     0.152088 

0 Time (Month)     0.149815 

4 Energy User Type (1=Residential, 2=Commercial,...     0.126852 

3 Population Density (per sq km)     0.112252 

6 Historical Energy Consumption (kWh) 0.101003 

2 Temperature (°C)     0.081245 

 

The data in Table 4 illustrates the importance levels of various features in the 

predictive model used for energy analysis. The most important feature is "Energy 

Tariff (USD per kWh)" with a score of 0.276745, indicating that energy tariffs 

significantly impact the model's predictions. This is followed by "Location (District 

Code)" with a score of 0.152088, showing that district location also substantially 

influences the model. "Time (Month)" has a score of 0.149815, indicating that the 

timing or month of measurement plays an important role in the model. 

The feature "Energy User Type (1=Residential, 2=Commercial,...)" contributes 

a score of 0.126852, suggesting that the type of energy user is also important but 

with a slightly lower contribution than the previous features. "Population Density 

(per sq km)" has a score of 0.112252, indicating that population density affects the 

model, although it is less significant compared to the other features. "Historical 

Energy Consumption (kWh)" with a score of 0.101003 shows that historical energy 

consumption also contributes to predictions, though not as strongly as other 

features. Lastly, "Temperature (°C)" has a score of 0.081245, indicating that 

temperature influences the model but with the smallest contribution among all the 

considered features. 

The data processing results demonstrate that the feature "Energy Tariff (USD per 

kWh)" has the highest importance level with a score of 0.276745, signifying that 

energy tariffs are the most influential factor in the model. "Location (District Code)" 

and "Time (Month)" follow as important features with scores of 0.152088 and 

0.149815, respectively, indicating that location and time also play significant roles 

in determining outcomes. The "Energy User Type" feature, with a score of 

0.126852, shows a considerable influence but is lower compared to energy tariffs, 

location, and time. Population density, historical energy consumption, and 
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temperature contribute less, with scores of 0.112252, 0.101003, and 0.081245, 

respectively. Overall, energy tariffs, location, and time are the primary factors in 

the model, while the other features provide smaller contributions to the predictive 

outcomes. 

Overall, this study reveals that energy tariffs, location, and time are the three main 

factors influencing the predicted outcomes of energy consumption in urban areas, 

while other factors such as user type, population density, historical energy 

consumption, and temperature have a smaller impact. 

4. Conclusion 
This research reveals the significant potential of data mining in analyzing and 

predicting energy consumption in urban areas, as part of Smart City development. 

Overall, it shows that energy tariffs, location, and time are the three main factors 

influencing the predicted outcomes of energy consumption, while other factors such 

as user type, population density, historical energy consumption, and temperature 

have a smaller impact. By utilizing techniques such as Random Forest and 

predictive analytics, the developed model can identify energy consumption patterns, 

forecast future energy needs, and provide valuable insights for energy distribution 

planning. Model evaluation demonstrates good performance, with a Mean Absolute 

Error (MAE) of 579.10 and a Root Mean Squared Error (RMSE) of 659.71, 

although there is still room for improvement in accuracy. Features such as energy 

tariffs and district location have the greatest influence on predictions, while 

temperature has the least impact. 

To enhance the model's accuracy, it is recommended to improve data quality and 

consider integrating more relevant features. Additionally, further development of 

technological infrastructure in cities is necessary to support the widespread and 

effective implementation of this model. 
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