A Bibliometric Review Of Academic Collaboration In The Governance, Risk And Compliance Of Artificial Intelligence

David Lau Keat Jin¹, Ganthan Narayana Samy², Fiza Abdul Rahim³, Mahiswaran Selvananthan⁴, Nurazean Maarop⁵ & Noor Hafizah Hassan⁶

¹²³⁵⁶ Advanced Informatics Department, Razak Faculty of Technology and Informatics, Universiti Teknologi Malaysia, Kuala Lumpur, 54100, Malaysia
⁴ Perdana Department, Razak Faculty of Technology and Informatics, Universiti Teknologi Malaysia, Kuala Lumpur, 54100, Malaysia
davidkeat@graduate.utm.my

Abstract

As Artificial Intelligence becomes increasingly pervasive in its application, research efforts have shifted from the discourse on ethical principles to the mechanism of implementation that would eventually bring benefits to the world’s population while minimizing its risks. The adoption of best practices in governance, risk management and compliance would not only promote these objectives but also foster greater adoption of the technology by nations of the world. As Artificial Intelligence models are dependent upon the data ingested and used by algorithms, the input from researchers of different nationalities has the potential to reduce bias, enhance interoperability, and facilitate the generation of accurate decisions. Moreover, formulation of universal legislations and standards that are applicable to all nations would spur compliance and acceptance of AI solutions by its potential users. Thus, this study aims to shed light on the level of international collaboration among academicians by analyzing the publications in the past decade. The results show that the major contributors in this domain are the USA, UK, and China. Also, most of the contributions are from selected academic institutions in those countries only. Hence, greater collaborations can be forged with notable researchers from these institutions by researchers and practitioners from other countries to ensure that the development and use of AI can benefit all mankind in our increasingly connected societies.

Keywords: Artificial Intelligence, governance, risk management, compliance, collaboration

1. Introduction

Artificial Intelligence (AI) systems are defined as systems that display intelligent behavior by analyzing their environment and taking actions with some degree of autonomy toward achieving specific goals often on par or exceed human intelligence [1]. As AI is dependent upon the analysis of data feed into the system and applying algorithmic manipulations on those data to generate the required output, there are bound to be imperfections in its operation [2]. Undesirable events as reported by media include racial bias [3], gender bias [4], discrimination in credit-score rating [5], inaccuracy in grading teachers [6] and examination results [7], as well as a the more catastrophic consequences of causing road accidents [8]. When
such incidents occur, the affected parties would require explanations regarding the way in which the AI system produce its conclusion or results [9]. Depending on the model used, there may be many stages of algorithms applied to the data fed into the system which may not be possible to explain, let alone interpret it by folks that are not trained in the field [10]. Apart from that, if personally identifiable information are ingested by the system, such as in finance and medical profession, the system may not comply with contemporary legislations regarding data privacy and protection [11, 12]. All these issues require deliberations by the stakeholders, particularly the organizations that are involved in its development, deployment, use and maintenance [13]. Furthermore, the number of incidents and controversies related to AI is increasing as reported by organization for AI, Algorithmic, and Automation Incidents and Controversies (AIAAIC) as shown in Figure 1.

![Number of AI Incidents and Controversies Worldwide](image)

Figure 1. AI Incidents and Controversies from 2012 till 2021 [14]

While the primary use of AI is to raise automation with the end results of elevating efficiencies and optimize the use of manpower, it can also be deliberately used for malicious purposes [15]. An example of such abuse is demonstrated by the use of Deepfakes to impersonate another person for scam [16]. When undesirable incidents occur due to unintentional or intentional use of AI, accountability issues arise as multiple stakeholders are involved in the approval, design, development, deployment, operation, maintenance and oversight of the system [17, 18]. This is exacerbated by the inscrutability of certain AI models which can be considered “black box” and the absence of any formal regulation or standard that could enforce compliance on responsible parties [19, 20].

2. Background

A review of extant articles related to ethical concerns due to AI was conducted by [21] and the author found that governance is the central theme that could affect all ethical issues raised by previous studies. In this regard, governance can be considered as: “a system of rules, practices, processes, and technological tools that are employed to ensure an organization’s use of AI technologies aligns with the
organization’s strategies, objectives, and values; fulfills legal requirements; and meets principles of ethical AI followed by the organization” [22]. The major goals of governance would be to ensure compliance and to manage risks [23]. This is the reason why the European Union (EU) AI Act specifies four levels of risks in considering the requirements for the use of AI by member countries [24, 25]. “AI risk management can drive responsible uses and practices by prompting organizations and their internal teams who design, develop, and deploy AI to think more critically about context and potential or unexpected negative and positive impacts. Understanding and managing the risks of AI systems will help to enhance trustworthiness, and in turn, cultivate public trust.” [26]. Before AI became mainstream, GRC framework was previously proposed for Information System. Hence, in the integrated governance framework proposed by [27], risk management and compliance with regulations are also incorporated as illustrated in Figure 2.

Figure 2. Integrated AI Governance Framework [27]

An international collaboration was manifested through “Montréal Declaration For A Responsible Development Of Artificial Intelligence” [28] in 2019 which agreed upon the ten principles as well-being, respect for autonomy, protection of privacy and intimacy, solidarity, democratic participation, equitable, diversity inclusion, caution, responsibility and sustainable development. In the following
year, Organization for Economic Cooperation and Development highlighted the principles for responsible stewardship of trustworthy AI as inclusive growth; sustainable development and well-being; human-centered values and fairness; transparency and explainability; robustness, security and safety; and accountability [29]. In reining over these concerns and considering the dependencies for AI related components in delivering a complete AI system, the World Economic Forum released their guidelines for AI procurement by governmental bodies [30]. As this progressive technology continues in its rapidly innovative path, there are bound to be novel issues that need international consultation and collaboration. Hence, it is timely for this study to provide an overview of the collaborative efforts undertaken by the academic communities. In line with this intention, Table 1 articulates the research questions and objectives of this study.

Table 1. Research Questions and Objectives

<table>
<thead>
<tr>
<th>No.</th>
<th>Research Question</th>
<th>Research Objective</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>What is the publication trend in the domain of governance, risk or compliance (GRC) in the past decade?</td>
<td>To validate the relevance of the research area.</td>
</tr>
<tr>
<td>2.</td>
<td>Who are the most cited authors in GRC approaches for AI?</td>
<td>To explore the relevance of the research domain and authors that contributed in the domain.</td>
</tr>
<tr>
<td>3.</td>
<td>Which countries’ academic work are most frequently cited?</td>
<td>To ascertain the relevance of the countries’ academic contribution.</td>
</tr>
<tr>
<td>4.</td>
<td>Which institutions produced the most academic articles?</td>
<td>To identify the most academically productive institutions so that future researchers can collaborate with the said institutions.</td>
</tr>
<tr>
<td>5.</td>
<td>What are the collaborative relationships among countries?</td>
<td>To illustrate the collaborative relationships among the countries.</td>
</tr>
</tbody>
</table>

3. Methodology

Bibliometrics is a statistical approach for assessing and analyzing the output of scientists, cooperation between universities, the effect of state-owned science funding on national research and development performance and educational efficiency [31]. In the past, this approach has been applied in the study of AI in various fields such as in operations environment [32], wastewater treatment [33], supply chain [34], tourism and hospitality [35] as well as renewable energy [36]. While there are various tools developed to process documents gathered for bibliometric analysis, [37] highlighted that Bibliometrix contains the more extensive set of techniques and suitable for practitioners through Biblioshiny [38]. With these rationales in place, the phases for this study are illustrated in Figure 3.
In line with Phase 3 of Figure 3, Web of Science (WoS) and Scopus are the two databases used for data collection in this study which are accessible from Universiti Teknologi Malaysia’s academic portal. WoS is an academic database that covers multiple disciplines and it is owned by Thomson & Reuters Corporation [39]. It is a source for high quality and reliable academic information and eventually became the main stream source for bibliometric analysis [40]. Comparatively, Scopus is the largest database of peer-reviewed journals [41] and it has been used by several other bibliometric studies [42]. Hence, these two databases are chosen for this study. Table 2 presents the method of searching from these two databases.

Table 2. Inclusion and Exclusion Criteria For Bibliometric Review

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Inclusion Criteria</th>
<th>Exclusion Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>Database</td>
<td>Scopus and WoS</td>
<td>Other databases</td>
</tr>
<tr>
<td>Search item</td>
<td>Title, abstract and author's keyword</td>
<td>Other metadata available</td>
</tr>
<tr>
<td>Search string</td>
<td>Scopus TITLE-ABS-KEY ((governance AND "artificial intelligence") OR ("risk management" AND "artificial intelligence") OR (compliance AND "artificial intelligence") not) AND PUBYEAR > 2012 AND PUBYEAR < 2024 AND (LIMIT-TO (DOCTYPE , "ar") OR LIMIT-TO (DOCTYPE , "cp") OR LIMIT-TO (DOCTYPE , "re") OR LIMIT-TO (DOCTYPE , "ch") OR LIMIT-TO (DOCTYPE , "bk") OR LIMIT-TO (DOCTYPE , "cr")) AND (LIMIT-TO (LANGUAGE , "English"))</td>
<td>Not applicable</td>
</tr>
</tbody>
</table>

Figure 3. Phases of Bibliometric Analysis

In line with Phase 3 of Figure 3, Web of Science (WoS) and Scopus are the two databases used for data collection in this study which are accessible from Universiti Teknologi Malaysia’s academic portal. WoS is an academic database that covers multiple disciplines and it is owned by Thomson & Reuters Corporation [39]. It is a source for high quality and reliable academic information and eventually became the main stream source for bibliometric analysis [40]. Comparatively, Scopus is the largest database of peer-reviewed journals [41] and it has been used by several other bibliometric studies [42]. Hence, these two databases are chosen for this study. Table 2 presents the method of searching from these two databases.
<table>
<thead>
<tr>
<th>Attribute</th>
<th>Inclusion Criteria</th>
<th>Exclusion Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>The following string for topic is applied:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(governance AND "artificial intelligence") OR ("risk management" AND "artificial intelligence") OR (compliance AND "artificial intelligence")</td>
<td></td>
</tr>
<tr>
<td>Published period</td>
<td>2013 until 2023 for Scopus; 01/01/2013 until 31/08/2023 for Web of Science</td>
<td>Period not within the inclusion range</td>
</tr>
<tr>
<td>Reference type</td>
<td>Research Articles, Review Article, Books, Book Chapters, Conference Papers</td>
<td>Websites, Magazines, Non-academic reports</td>
</tr>
<tr>
<td>Language</td>
<td>English</td>
<td>Other languages</td>
</tr>
</tbody>
</table>

For this study, EndNote is used as the document management software while RStudio, Biblioshiny and Excel are used for data analysis. Prior to data analysis, the duplicate references obtained from WoS and Scopus databases are dropped. This is achieved by running the following commands in RStudio command line prior to importing the file named mergedb.xlsx in Biblioshiny.

```
S = convert2df("scopus.bib", dbsource = "scopus", format = "bibtex")
W = convert2df("wos.bib", dbsource = "isi", format = "bibtex")
Database = mergeDbSources(S, W, remove.duplicated = TRUE)
```

4. Result

The total number of references obtained from WoS and Scopus are 2,225 and 1,338 respectively. The total number of duplicates removed is 472 resulting in the totally distinct reference as 3,091. The number of publication is on an increasing trend from the list of references extracted from both databases as evident from Figure 4. It should be noted that the number of publication for the year 2023 is until August 2023 and does not represent the full-year amount. The total number of references from 2013 until 2023 is given in Appendix A.
Figure 4. Number Of Publications For The Past 10 Years

The authors cited most frequently for their academic work are illustrated in Figure 5. Future researchers can determine if they should collaborate with these authors based on their experiences. The full list of authors is given in Appendix B.

Figure 5. Top Authors by Number of References

Based on the authors’ country membership, the countries with the most citations are given in Figure 6. It represents the importance of their authors’ work as it is cited by other researchers. The full list of countries with number of citations is given as Appendix C.
Figure 6. Top 10 Countries Based on Citations

The collaborative relationship between countries is illustrated in Figure 7. The thick lines indicate that the major research cooperations are between the countries of Canada and Europe, Australia and Europe, US and China, US and Europe. Hence, it can be concluded that the there are awareness and willingness by the academic community within each continent to collaborate to achieve greater effectiveness in GRC for AI. The full list of collaborative relationships is given in Appendix D.

Figure 7. Collaboration Of Academic Researches In The World

The institutions that contributed the most in terms of academic articles are depicted in Figure 8. From the figure, it is clear that academic institutions are still at the forefront of research in this domain compared to business entities. University of Oxford produced the greatest number of studies in this domain followed by University of Toronto and University of Cambridge. There is a large gap between the number of publications between the University of Oxford and University of Toronto which is as much as 78 making the University of Oxford way ahead from other institutions in terms of publication. The complete list of publications by each affiliation is given in Appendix E.
In addition to answering the research questions, the proximity of the terms governance, risk and compliance is gauged by the occurrence of the keywords either individually or concurrently in the field of title, author’s keyword or abstract as presented in Table 3. From the result, the occurrence of the keyword is highest in the abstract of the references, while it occurred the least for simultaneous usages in all the said fields. While the concurrent use of all GRC terms in all the 3 fields are as much as 16% of the references examined, this is still equivalent to 515 of the references. Arguably, the result confirms that the three terms are closely linked in the discourse regarding governance, risk management or compliance with regards to AI technology. The complete list of references is given in Appendix F.

Table 3. Keyword Occurrence Analysis For GRC

<table>
<thead>
<tr>
<th>Occurrence of the terms (governance, risk or compliance)</th>
<th>Number of Occurrence</th>
<th>Percentage of References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Title only</td>
<td>798</td>
<td>25.82%</td>
</tr>
<tr>
<td>Keyword only</td>
<td>1013</td>
<td>32.77%</td>
</tr>
<tr>
<td>Abstract only</td>
<td>2655</td>
<td>85.89%</td>
</tr>
<tr>
<td>Title and Keyword</td>
<td>2561</td>
<td>82.85%</td>
</tr>
<tr>
<td>Title and Abstract</td>
<td>2363</td>
<td>76.45%</td>
</tr>
<tr>
<td>Keyword and Abstract</td>
<td>848</td>
<td>27.43%</td>
</tr>
<tr>
<td>Title, Abstract and Keyword</td>
<td>515</td>
<td>16.66%</td>
</tr>
</tbody>
</table>

5. Discussion

Based on Figure 4, GRC approaches for AI is gaining attention by the research community. In addition, the authors that are most impactful in this field can be seen in Figure 5. Also, the countries that are at the forefront of this research domain are USA, United Kingdom, China, Australia and Netherlands with more than 100 publications for the past decade as illustrated in Figure 6. While future researches can look for the researchers from these countries due to their experiences, it also implies that more studies should be implemented by the countries that devoid in
publications particularly for field-dependent researches like actual application of AI in different environment such as in North Asia, South East Asia and South America. This is reinforced by the collaborative relationships demonstrated in Figure 7.

Interestingly, the most prolific universities in this research domain are situated in USA, Europe and Australia as evident from Figure 8. Institutions from other countries would do well to collaborate with these institutions to ensure that their countries are not left behind in terms of GRC development as AI becomes pervasive throughout the globe. Last but not the least, GRC is a progressive domain of research as new models of AI with more ubiquitous use cases are offered to the public. It would be interesting to see standards similar to IT governance like testing, audit requirements and certifications to be ratified through international collaboration among researchers.

6. Conclusion

Just as multi-disciplinary approaches and consultations with different stakeholders are required to obtain a holistic impact of AI systems, cross-country and cross-cultural cooperation are paramount to ensure that AI serves the needs of all humans and not to a privileged few or people from certain geographic regions per se. Such approaches stimulate the growth in development and adoption of the technology as well as enhance its adaptability for different geographical and cultural needs. This is in line with the vision of human-centered AI as espoused by various researchers [43-47]. Apart from these benefits, multi-ethnic cooperation underpins efforts to reduce bias from decision-support systems embedded with algorithms of AI. Furthermore, the accuracy of output generated can be assessed by researchers from different countries operating AI in diverse environment. This is true for autonomous systems which are used for self-driving vehicles and clinical systems used for diagnosis of diseases. Similar studies can be conducted to gauge the levels of cooperation in specific domain of AI to uncover its application, challenges, and research directions.

Acknowledgments

The author would like to thank the Malaysian Public Services Department that sponsored the research.

References