
Open International Journal of Informatics (OIJI) Vol. 11 No. 2 (2023)

46

* Corresponding author.danyar.nabaz@gmail.com

Design Of Emergency Keyword Recognition Using

Arduino Nano BLE Sense 33 And Edge Impulse

Danyar N. Karim1, Noraimi Shafie2, Azizul Azizan3
1,2,3Univesiti Teknologi Malaysia

1danyar.nabaz@gmail.com, 2noraimi.kl@utm.my,
3azizulazizan@utm.my

Article history

Received:
28 Oct 2023

Received in revised
form:
10 Nov 2023

Accepted:
16 Nov 2023

Published online:
18 Dec 2023

*Corresponding
author
danyar.nabaz
@gmail.com

Abstract

This project focuses on Custom Keyword Voice Recognition (CKVR) for emergency response
scenarios. A multilingual keyword spotting system is developed using the Arduino Nano 33 BLE
Sense board and Edge Impulse. The system accurately recognizes the keyword "help" in English,
Arabic, Kurdish, and Malay languages. The project utilizes Mel Frequency Cepstral Coefficients
(MFCC) for feature extraction and employs deep learning techniques for model training. By
optimizing the model through quantization and achieving 100% accuracy in training and testing
phases, the system provides a reliable solution for identifying emergency keywords. The developed
system has the potential to enhance safety in public spaces such as malls, hospitals, schools, and
stations by quickly responding to individuals in distress. The project demonstrates the effectiveness
of the chosen approach, highlighting the significance of MFCC processing, classification learning,
and optimized model design in speech recognition. The successful development of this keyword
spotting system opens doors for further advancements in the field and emphasizes the potential for
innovative solutions that contribute to a safer and more responsive world.

Keywords: Machine learning, edge impulse, Arduino nano BLE 33 sense, keyword spotting,
keyword recognition

1. Introduction

 The field of speech recognition has seen tremendous growth in recent years,
owing to its wide array of applications in modern technology. From powering AI
assistants like Alexa and Siri to enabling voice-activated controls in smart homes,
speech recognition is revolutionizing human interaction with electronic devices. An
essential facet of this field is Custom Keyword Voice Recognition (CKVR), which
focuses on identifying specific keywords within audio samples.

The current project is on capitalizing the potential of CKVR in emergency response
scenarios. The development of a multilingual keyword spotting system using
machine learning are focus on designed to identify a critical keyword "help" from
audio inputs. This system is unique and able to recognize the keyword across four
languages: English, Arabic, Kurdish, and Malay. The backbone of this project using

Open International Journal of Informatics (OIJI) Vol. 7 No. 2
(2019)

47

Arduino Nano 33 BLE sense board and Edge Impulse, which involved data
collection and model training.

CKVR typically involves the generation of an audio signal and identification of its
properties using the Mel Frequency Cepstral Coefficients (MFCC) technique. The
algorithm categorizes various keywords to train the neural network and is
subsequently converted into a file deployable on an Arduino device, specifically the
Arduino Nano 33 BLE sense in this project. Traditional approaches to CKVR often
required significant processing power, making use of cloud servers for necessary
hardware and advanced feature extraction techniques. However, these methods tend
to result in high costs and inconsistent recognition rates due to ambiguous feature
extraction and substantial processing board sizes.

This project addresses these challenges using a deep learning-based model trained
on curated datasets, optimized for accurate and efficient feature extraction. A
variety of techniques are used to interpret human speech, including frequency-time
interpretations like spectrograms, power spectral densities, frequency-energy
interpretations, cepstral analysis, and linear predictive coding. In addition, the use
of Leaky RELU activation function provides the highest accuracy in the model.

In the pursuit of leveraging technology to increase safety in public spaces, the
engagement of the development of a Keyword Voice Recognition system is
focused. The primary motivation of the project is to create an accessible, practical
solution that is attuned to the urgency of emergency situations. The target
environments for system's deployment are heavily populated public areas such as
malls, hospitals, schools, and stations, where quick response to individuals in
distress is often critical.

Designing the model for this recognition system focuses on the substantial
knowledge of extracting features from human pitches. The discussion on the
development phase led to an understanding of the importance of incorporating
various activation functions during the model's training. By doing so, the aim of the
project is to strike a balance between responsiveness and accuracy, resulting in an
optimized model that can correctly interpret the urgency in the voice of a person in
danger.

Once operational, the recognition model use the embedded microphone in the
microcontroller to capture the user's speech. A significant aspect of ongoing
discussion is the consideration of how to handle the various features extracted from
the captured speech. Depending on these features, the system initiates different
operations. The challenge lies in ensuring these operations correlate accurately with
the urgency and the context of the situation.

This discourse is pushing towards creating a solution that doesn't just act as a
reactionary system, but rather one that proactively contributes to a safer
environment. The path towards the realization of this project is filled with

Open International Journal of Informatics (OIJI) Vol. 7 No. 2
(2019)

48

fascinating technical challenges and look forward to addressing them and
continuing this important conversation.

2. Literature Review

The development of Custom Keyword Voice Recognition system, relying on a real-
time dataset, progresses through five essential stages. The crux of the project is data
collection and feature extraction from the acquired data. Unlike conventional
methodologies that utilize readily available data for model training, the approach is
a tad more hands-on. The engagement in rigorous data collection from a multitude
of individuals with varied voice pitches. The features thus extracted from the
collected voice data paved the way for the creation of a unique dataset for model
training.

The work of Ramachandra A.C, Raghavendra Prasanna, and Prem Chowdary
Kakarla [1] on "Implementation Of Tiny Machine Learning Models On Arduino 33
BLE For Gesture And Speech Recognition" stands out. The proposed model
leveraged extracted features for training and created a required Neural Network
model embedded into the Arduino Nano 33 BLE sense. Notably, Edge Impulse was
employed as the development platform for model training and testing, in addition
to data collection and pre-processing tools. In a similar vein, the work of Ahmad
Dziaul Islam Abdul Kadir, Ahmed Al-Haiqi, and Norashidah Md Din [2] on "Age
Classification Based on Voice Commands" used a deep learning model developed
via Edge Impulse. The model tested data collected from various individuals.

Insights from Vikranth Singh Tomar's [3] proposal of a TinyML and Voice
Recognition model, which articulated the extraction of features from the voice
dataset using the MFCC technique, a key input for training the deep learning model.
The work of Sam Myer and Vikrant Tomar [4] on "Speech Recognition on Low
Power Devices" provided guidance on building a neural network with respect to
microcontroller specifications. Meanwhile, a published model emphasizing that
"Neural Networks and Deep Learning consist of both classical and modern models"
[5] proposed the implementation of deep learning models that have been
instrumental in improving the model's accuracy.

Other studies [6,7,8] focused on the application of deep learning models on low-
power devices. The Neural network is trained using collected data via Edge
Impulse, which auto-extracts features to train the model. Rusci, M, Capotondi, and
Benini [9] suggested "quantized nns as the definitive solution for the interface on
low-power arm mcus" which informed the specifications of microcontroller and
facilitated model development.
Works by Han, Song, Xingyu Liu, Huizi Mao, Jing Pu [10], and Teerapittayanon,
Surat, Bradley McDanel Lan [11] provided valuable insight into constructing
datasets for training models according to the processing engine. The connection of
microcontrollers to WiFi and the cloud for data transmission was a crucial aspect
covered in other references [12,13,14].

Open International Journal of Informatics (OIJI) Vol. 7 No. 2
(2019)

49

In subsequent sections, the software tools used to develop Deep Learning Model.
This will be followed by the display of Experimental Results, reflecting the
Accuracy and Loss of the Training and Testing Data, and a discussion on the
Confusion Matrix used in both datasets. The final section encapsulate the
conclusion, and reference contributions to the project.

3. Design Approach and Methodology

The project unfolds across two critical phases: firstly, the development of neural
networks utilizing a custom keyword dataset via the Edge Impulse platform; and
secondly, the implementation of these neural networks into the Arduino Nano 33
BLE Sense environment.

A. Deep learning using TinyMl:

TinyML is characterized as an operational neural network model designed to

function on less than 1 mW power. This results in a compact, portable device
capable of supporting any application that necessitates intricate machine learning
algorithms [15] Warden. Machine learning operates by forming a system model
based on the input data from the programmer, a phase known as 'training.' Once the
training phase concludes, the predictive data is fed into the model, a process referred
to as 'inference' [15]. TensorFlow Lite was conceived to cater to projects intended
for smaller-scale execution. It's engineered to run on just a few kilobytes of space,
thus, the libraries don't rely on any operating systems, C or C++ dependencies,
floating-point hardware, or dynamically allocatable memory [15]. The deep
learning algorithms feasible for TinyML implementation encompass Convolutional
Neural Networks (CNN), Support Vector Machines (SVM), or a hybrid approach
known as Transfer Learning [16]. As demonstrated in [16], different emotions were
classified using a deep neural network grounded on Raspberry Pi. The utilized
machine learning API was Keras, employing TensorFlow for model definition and
training. The model, a Deep Neural Network (DNN), comprises multiple CNN
layers, Pooling layers, and Fully Connected (FC) layers. The cascading of
convolution layers enables the model to learn an array of features while keeping the
filter size minimal. Figure 1 is a Block diagram of flow of implementation of
TinyML.

Figure 1 Block diagram of flow of implementation of TinyML.

Open International Journal of Informatics (OIJI) Vol. 7 No. 2
(2019)

50

1) Data Collection: This is the initial stage in the implementation of a

TinyML model. It involves gathering a substantial amount of relevant
data that the model can learn from. This data can be collected from
various sources and in various forms such as images, audio files, text, or
numerical data. The data collected should be diverse and representative
of the real-world scenarios that the model is expected to encounter.

2) Data Processing: After collecting the data, the next step involves
processing the data to prepare it for the model. This can involve various
sub-steps including cleaning the data to remove any irrelevant or corrupt
data, normalizing or standardizing data, handling missing data, and data
augmentation. The goal here is to make the data more suitable for model
training by converting it into a form that the model can understand and
learn from.

3) Model Design: This stage involves selecting an appropriate machine

learning model based on the problem at hand. This could be a neural
network, decision tree, or other types of models. In TinyML, this
typically involves designing a neural network architecture which is
compact yet sufficiently capable to handle the complexity of the task at
hand.

4) Model Training: Once the model has been designed, the next step is to

train the model using the processed data. Training involves presenting
the model with the input data and allowing it to make predictions. The
model's predictions are then compared to the actual outcomes, and the
model adjusts its internal parameters to improve its predictions. This
process is repeated multiple times to minimize the prediction error.

5) Model Evaluation and Optimization: After training, the model's

performance is evaluated using a separate validation dataset that the
model has not previously seen. This gives an unbiased estimate of the
model's performance. If the model's performance is not satisfactory,
hyperparameters are tweaked or changes are made in the architecture of
the model to optimize its performance.

6) Model Conversion: Once the model is optimized and satisfactory

performance is achieved, the model is converted into a format that can
be implemented on the target hardware, usually a microcontroller for
TinyML applications. This often involves quantization or other
techniques to reduce the size and complexity of the model.

7) Model Deployment: The converted model is then deployed onto the

target hardware. This involves programming the hardware with the
model and any necessary inference code. The model is now ready to
make predictions in the field.

Open International Journal of Informatics (OIJI) Vol. 7 No. 2
(2019)

51

8) Making Inferences: This is the final stage where the deployed model is

now used to make predictions or inferences on new, real-world data. The
model processes the input data, making inferences based on its training,
and produces output that can be used to make decisions or further
processes.

B. Arduino nano BLE sense

 The hardware component employed in this development project is the
Arduino Nano 33 BLE Sense, as illustrated in Figure 2. This advanced platform is
designed for the utilization of cutting-edge AI models. Under its hood, it houses a
32-bit ARM Cortex-M4F microcontroller operating at 64MHz, equipped with 1MB
of system memory and 256KB RAM. This compact controller delivers sufficient
capability for the deployment of Tiny ML models.

Figure 2 Arduino Nano 33- BLE

Moreover, the Arduino Nano 33 BLE Sense is integrated with a plethora of sensors
that measure variables such as temperature, brightness, proximity, touch, motion,
and vibration. The comprehensive sensor suite embedded within this device makes
it suitable for a wide array of applications.

C. Edge Impulse

 Edge Impulse is an integrated development platform specifically designed
for developing machine learning models for edge devices. It offers a comprehensive
set of tools and features that facilitate the entire development workflow, from data
collection and preprocessing to model training and deployment. Edge Impulse
provides a user-friendly interface where it can import and preprocess audio data,
choose and configure signal processing blocks such as MFCC, and select learning
blocks like Transfer Learning or Classification. It allows to train and optimize the
model using curated datasets, evaluate its performance, and convert it into a format

Open International Journal of Informatics (OIJI) Vol. 7 No. 2
(2019)

52

suitable for deployment on the Arduino Nano BLE Sense board. Edge Impulse
greatly simplifies the process of developing machine learning models for edge
devices, providing a seamless and efficient experience for creating robust and
accurate keyword spotting systems on the Arduino Nano BLE Sense.

D. Phases of the project

 These phases guide the development process of the keyword spotting
project, leveraging Edge Impulse and Arduino Nano BLE Sense to create an
efficient and accurate system for real-time keyword recognition. Figure 3 shows the
project flow chart based on the steps and phases.

a) Data Collection: Utilizing Edge Impulse's built-in recorder connected to
Arduino Nano BLE 33, the sound is captured as 15-second audio samples,
after that the sound is segmented.

b) Data Segmentation: Each 15-second audio sample is split into smaller
segments. Segmentation helps improve the efficiency of processing and
allows for a more fine-grained analysis of the audio data.

c) Impulse Creation and Configuration: to create an impulse in Edge

Impulse, defining the processing block, learning block, and feature
extraction settings. Here, set the window size and window increase,
window Size: this parameter defines the length of each audio segment that
will be processed. In other words, it determines how much audio data is
considered at once. The window size is typically measured in
milliseconds. Window Increase: This parameter, also known as hop size
or stride, determines the overlap between consecutive windows. It defines
how much the window should move forward in the data for the next
segment. For example, if a window size of 1000 ms and the window
increase of 200 ms, it means that every second window starts 500 ms (half
a second) after the first one. This means there is a 20% overlap between
consecutive windows. Processing Block specifies the chosen audio
processing technique (e.g., MFCC, MFE). Learning Block determines the
learning algorithm or approach (e.g., Transfer Learning or Classification)
and feature Extraction extracts relevant features from the audio segments
for training and analysis.

d) Model Training: The model is trained using the curated dataset, and the
training results are obtained. Training involves optimizing the model
parameters using the labeled audio segments to learn and identify
keyword patterns.

e) Model Testing: The trained model is tested using a separate dataset to

evaluate its performance and accuracy. Testing provides insights into the
model's ability to correctly identify keywords in unseen audio samples.

Open International Journal of Informatics (OIJI) Vol. 7 No. 2
(2019)

53

f) Project Deployment: The project is deployed as an Arduino library,
allowing for easy integration and use with Arduino Nano BLE Sense. The
deployment ensures that the developed model and associated code are
readily accessible and compatible with the target hardware. It’s worth
mentioning that optimization can be achieved through either quantized or
unoptimized approaches. Quantization refers to the process of reducing the
precision of numerical values, such as converting floating-point numbers
to fixed-point numbers with a limited range. On the other hand,
unoptimized methods involve performing optimization without any
specific adjustments or enhancements. The reason for choosing
quantization is its ability to provide 100% accuracy after thorough testing.
By reducing the precision of numerical values, quantization enables
efficient storage and computation, resulting in optimized performance.
This technique is particularly useful in scenarios where computational
resources are limited, as it allows for faster and more efficient execution.

Figure 3 shows the project flow chart.

Open International Journal of Informatics (OIJI) Vol. 7 No. 2
(2019)

54

4. Results and Discussion.

After successfully collecting data, the extensive tests using different
processing blocks and learning blocks to determine the optimal configuration for
machine learning project. The results of these tests are presented in Table 1, which
summarizes the performance metrics of each configuration.

Table 1 Performance Comparison of Different Processing and Learning Blocks

Processing
Block

Learning
Block

Training
Accuracy

Loss Test
Accuracy

Created
features

Audio
(MFE)

Transfer
learning
(Keyword
Spotting)

%100 0.40 %83.33 5710

Audio
(MFE)

Classification %88.8 0.23 %100 5160

Audio
(MFCC)

Classification %93.8 0.21 %90.1 845

The table provides a summary of the training accuracy, loss, test accuracy, and the
number of created features for each combination of processing and learning blocks.
The first configuration, utilizing the Audio (MFE) processing block with Transfer
Learning (Keyword Spotting) as the learning block, achieved a training accuracy of
100%, a loss of 0.40, and a test accuracy of 83.33%, with 5710 features created. The
second configuration, using Audio (MFE) with Classification as the learning block,
achieved a training accuracy of 88.8%, a loss of 0.23, and a perfect test accuracy of
100%, with 5160 features created. Lastly, the third configuration, which shows the
best results out of them, employing Audio (MFCC) with Classification as the
learning block, achieved a training accuracy of 93.8%, a loss of 0.21, and a test
accuracy of 90.1%, with 845 features created.

Table 2. Impact of Training Cycles and Learning Rate on Model Accuracy
Number of
training
cycles

Learning
rate

Model
Training
Accuracy

Loss Model
Testing
Accuracy

100 0.005 %80 0.41 %84
120 0.005 %94.7 0.14 %91.7
150 0.006 %92.4 0.18 %90
200 0.008 %100 0.00 %100
220 0.009 %94.33 0.12 %93.33
250 0.009 %100 0.06 %83.33

The table illustrates the influence of different training cycles and learning rates on
the model's performance. As the number of training cycles increased from 100 to
250, its observed varying levels of accuracy and loss. Notably, the best overall
accuracy was achieved with 200 training cycles and a learning rate of 0.008,

Open International Journal of Informatics (OIJI) Vol. 7 No. 2
(2019)

55

resulting in 100% accuracy in both model training and testing. Figures 4 and 5 show
the model training and testing results.

Figure 1. Model Training Results

These results highlight the importance of optimizing the training cycles and learning
rate to maximize the model's accuracy. Through iterative adjustments, the
identification for ideal combination that yielded the highest level of accuracy for
keyword spotting project.

Figure 2. Model Testing Results

4. Conclusion

The successfully developed a unique keyword spotting system that excels at
identifying the critical keyword "help" in multiple languages, including English,
Arabic, Kurdish, and Malay. This system harnesses the power of the Arduino Nano
33 BLE Sense board and leverages the capabilities of Edge Impulse for data
processing and model training. In pursuit of the most effective approach, the
combined the Mel Frequency Cepstral Coefficients (MFCC) processing block with
the Classification learning block. This combination proved to be the optimal choice,
resulting in outstanding performance. Furthermore, the employment of Quantized
(int8) optimization techniques to ensure efficient utilization of resources without
compromising accuracy. Through rigorous training and testing, the model exhibited

Open International Journal of Informatics (OIJI) Vol. 7 No. 2
(2019)

56

an exceptional accuracy rate of 100% in both the training and testing phases. This
high level of accuracy is a testament to the effectiveness of the chosen approach and
the robustness of the keyword spotting system. By accurately identifying the
keyword "help" across multiple languages, the system is well-equipped to support
emergency response scenarios and improve safety in various environments.
Whether it is in bustling public spaces, hospitals, schools, or other critical areas, the
keyword spotting system stands ready to provide immediate assistance. The
successful development of this system highlights the effectiveness of the MFCC
processing block, Classification learning block, and the careful optimization of the
model. These achievements pave the way for further advancements in the field of
speech recognition and demonstrate the potential for creating innovative solutions
that contribute to a safer and more responsive world.

Acknowledgments

We like to generously thanks Universiti Teknologi Malaysia (UTM), and the
Ministry of Higher Education Malaysia for all the supports to complete this
research.

References

[1] Viswanatha V, Ramachandra A.C, Raghavendra Prasanna, Prem Chowdary Kakarla, Viveka

Simha PJ, Nishant Mohan. Implementation Of Tiny Machine Learning Models On Arduino
33 BLE For Gesture And Speech Recognition.

[2] Ahmad Dziaul Islam Abdul Kadir; Ahmed Al-Haiqi; Norashidah Md Din. A Dataset and

TinyML Model for Coarse Age Classification Based on Voice Commands, IEEE 2021.

[3] Vikranth Singh Tomar. TinyML and Voice Recognition Technology .

[4] Sam Myer and Vikrant Tomar. Speech Recognition on low power devices.

[5] Charu C.Aggarwal(2018). Neural Networks and deep learning consists both classical and

modern models.

[6] Ian McGraw,Raziel Alvarez, Montse Gonzalez Arenas, Kanishka Rao, “Personalize d speech

recognition on mobile devices. In Acoustics, Speech and Signal Processing”, IEEE 2016.

[7] Dania Maryam Waqar; Teddy Surya Gunawan; Malik Arman Morshidi; Mira Kartiwi. Design

of a Speech Anger Recognition System on Arduino Nano 33 BLE Sense(IEEE-2021).

[8] Pete Warden and Daniel Situnayake. Machine Learning with tensorflow on Arduino and

Ultra-Low-power Microcontrollers.

[9] Rusci, M., Capotondi,Benini, “quantized nns as the definitive solution for interface on low-

power arm mcus”,IEEE 2018.

[10] Han, Song, Xingyu Liu, Huizi Mao, Jing Pu, Ardavan Perdram, Mark A. Horowiz,”EIE :

efficient interence engine on compressed deep neural network.”

[11] Teerapittayanon, Surat, Bardley McDanel Lan, “Distributed deep neural networks over the

cloud, the edge and end devices”.

Open International Journal of Informatics (OIJI) Vol. 7 No. 2
(2019)

57

[12] Manasa, T., Kadali, J., Syed, N., Raju, G. K., & Jamal, K. (2022, November). IoT based Coal
Mine Safety Monitoring and Warning System. In 2022 Sixth International Conference on I-
SMAC (IoT in Social, Mobile, Analytics and Cloud)(I-SMAC) (pp. 11-15). IEEE.

[13] Sudhakar Yadav, N., Ravikanth Motupalli, N., Jamal, K., & Usha Rani, Y. (2022). Predictive

and Behavioral Analytics for Big Data Architecture. In Recent Trends in Product Design and
Intelligent Manufacturing Systems: Select Proceedings of IPDIMS 2021 (pp. 595-605).
Singapore: Springer Nature Singapore.

[14] Sumanth, P., Samiuddin, S., Jamal, K., Domakonda, S., & Shivani, P. (2022, April). Toxic

Speech Classification using Machine Learning Algorithms. In 2022 International Conference
on Electronic Systems and Intelligent Computing (ICESIC) (pp. 257-263). IEEE.

[15] P. Warden, D. Situnayake, “TinyML: Machine Learning with TensorFlow Lite on Arduino

and Ultra-Low-Power Microcontrollers,” O’Reilly Media, 2019.

[16] V. Srinivasan, S. Meudt, F. Schwenker, “Deep learning algorithms for emotion recognition

on low-power single-board computers,” In IAPR Workshop on Multimodal Pattern
Recognition of Social Signals in Human-Computer Interaction, pp. 59-70, 2018.

