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Abstract 

This project focuses on Custom Keyword Voice Recognition (CKVR) for emergency response 
scenarios. A multilingual keyword spotting system is developed using the Arduino Nano 33 BLE 
Sense board and Edge Impulse. The system accurately recognizes the keyword "help" in English, 
Arabic, Kurdish, and Malay languages. The project utilizes Mel Frequency Cepstral Coefficients 
(MFCC) for feature extraction and employs deep learning techniques for model training. By 
optimizing the model through quantization and achieving 100% accuracy in training and testing 
phases, the system provides a reliable solution for identifying emergency keywords. The developed 
system has the potential to enhance safety in public spaces such as malls, hospitals, schools, and 
stations by quickly responding to individuals in distress. The project demonstrates the effectiveness 
of the chosen approach, highlighting the significance of MFCC processing, classification learning, 
and optimized model design in speech recognition. The successful development of this keyword 
spotting system opens doors for further advancements in the field and emphasizes the potential for 
innovative solutions that contribute to a safer and more responsive world. 
 

Keywords: Machine learning, edge impulse, Arduino nano BLE 33 sense, keyword spotting, 
keyword recognition   
 
 
1. Introduction 
 
  The field of speech recognition has seen tremendous growth in recent years, 
owing to its wide array of applications in modern technology. From powering AI 
assistants like Alexa and Siri to enabling voice-activated controls in smart homes, 
speech recognition is revolutionizing human interaction with electronic devices. An 
essential facet of this field is Custom Keyword Voice Recognition (CKVR), which 
focuses on identifying specific keywords within audio samples. 
 
The current project is on capitalizing the potential of CKVR in emergency response 
scenarios. The development of a multilingual keyword spotting system using 
machine learning are focus on designed to identify a critical keyword "help" from 
audio inputs. This system is unique and able to recognize the keyword across four 
languages: English, Arabic, Kurdish, and Malay. The backbone of this project using 
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Arduino Nano 33 BLE sense board and Edge Impulse, which involved data 
collection and model training. 
 
CKVR typically involves the generation of an audio signal and identification of its 
properties using the Mel Frequency Cepstral Coefficients (MFCC) technique. The 
algorithm categorizes various keywords to train the neural network and is 
subsequently converted into a file deployable on an Arduino device, specifically the 
Arduino Nano 33 BLE sense in this project. Traditional approaches to CKVR often 
required significant processing power, making use of cloud servers for necessary 
hardware and advanced feature extraction techniques. However, these methods tend 
to result in high costs and inconsistent recognition rates due to ambiguous feature 
extraction and substantial processing board sizes. 
 
This project addresses these challenges using a deep learning-based model trained 
on curated datasets, optimized for accurate and efficient feature extraction. A 
variety of techniques are used to interpret human speech, including frequency-time 
interpretations like spectrograms, power spectral densities, frequency-energy 
interpretations, cepstral analysis, and linear predictive coding. In addition, the use 
of Leaky RELU activation function provides the highest accuracy in the model. 
 
In the pursuit of leveraging technology to increase safety in public spaces, the 
engagement of the development of a Keyword Voice Recognition system is 
focused. The primary motivation of the project is to create an accessible, practical 
solution that is attuned to the urgency of emergency situations. The target 
environments for system's deployment are heavily populated public areas such as 
malls, hospitals, schools, and stations, where quick response to individuals in 
distress is often critical. 
 
Designing the model for this recognition system focuses on the substantial 
knowledge of extracting features from human pitches. The discussion on the 
development phase led to an understanding of the importance of incorporating 
various activation functions during the model's training. By doing so, the aim of the 
project is to strike a balance between responsiveness and accuracy, resulting in an 
optimized model that can correctly interpret the urgency in the voice of a person in 
danger. 
 
Once operational, the recognition model use the embedded microphone in the 
microcontroller to capture the user's speech. A significant aspect of ongoing 
discussion is the consideration of how to handle the various features extracted from 
the captured speech. Depending on these features, the system initiates different 
operations. The challenge lies in ensuring these operations correlate accurately with 
the urgency and the context of the situation. 
 
This discourse is pushing towards creating a solution that doesn't just act as a 
reactionary system, but rather one that proactively contributes to a safer 
environment. The path towards the realization of this project is filled with 
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fascinating technical challenges and look forward to addressing them and 
continuing this important conversation. 
 
2. Literature Review 
 
The development of Custom Keyword Voice Recognition system, relying on a real-
time dataset, progresses through five essential stages. The crux of the project is data 
collection and feature extraction from the acquired data. Unlike conventional 
methodologies that utilize readily available data for model training, the approach is 
a tad more hands-on. The engagement in rigorous data collection from a multitude 
of individuals with varied voice pitches. The features thus extracted from the 
collected voice data paved the way for the creation of a unique dataset for model 
training. 
 
The work of Ramachandra A.C, Raghavendra Prasanna, and Prem Chowdary 
Kakarla [1] on "Implementation Of Tiny Machine Learning Models On Arduino 33 
BLE For Gesture And Speech Recognition" stands out. The proposed model 
leveraged extracted features for training and created a required Neural Network 
model embedded into the Arduino Nano 33 BLE sense. Notably, Edge Impulse was 
employed as the development platform for model training and testing, in addition 
to data collection and pre-processing tools. In a similar vein, the work of Ahmad 
Dziaul Islam Abdul Kadir, Ahmed Al-Haiqi, and Norashidah Md Din [2] on "Age 
Classification Based on Voice Commands" used a deep learning model developed 
via Edge Impulse. The model tested data collected from various individuals. 
 
Insights from Vikranth Singh Tomar's [3] proposal of a TinyML and Voice 
Recognition model, which articulated the extraction of features from the voice 
dataset using the MFCC technique, a key input for training the deep learning model. 
The work of Sam Myer and Vikrant Tomar [4] on "Speech Recognition on Low 
Power Devices" provided guidance on building a neural network with respect to 
microcontroller specifications. Meanwhile, a published model emphasizing that 
"Neural Networks and Deep Learning consist of both classical and modern models" 
[5] proposed the implementation of deep learning models that have been 
instrumental in improving the model's accuracy. 
 
Other studies [6,7,8] focused on the application of deep learning models on low-
power devices. The Neural network is trained using collected data via Edge 
Impulse, which auto-extracts features to train the model. Rusci, M, Capotondi, and 
Benini [9] suggested "quantized nns as the definitive solution for the interface on 
low-power arm mcus" which informed the specifications of microcontroller and 
facilitated model development. 
Works by Han, Song, Xingyu Liu, Huizi Mao, Jing Pu [10], and Teerapittayanon, 
Surat, Bradley McDanel Lan [11] provided valuable insight into constructing 
datasets for training models according to the processing engine. The connection of 
microcontrollers to WiFi and the cloud for data transmission was a crucial aspect 
covered in other references [12,13,14]. 
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In subsequent sections, the software tools used to develop Deep Learning Model. 
This will be followed by the display of Experimental Results, reflecting the 
Accuracy and Loss of the Training and Testing Data, and a discussion on the 
Confusion Matrix used in both datasets. The final section encapsulate the 
conclusion, and reference contributions to the project. 
 
3. Design Approach and Methodology 
 
The project unfolds across two critical phases: firstly, the development of neural 
networks utilizing a custom keyword dataset via the Edge Impulse platform; and 
secondly, the implementation of these neural networks into the Arduino Nano 33 
BLE Sense environment. 
 
A. Deep learning using TinyMl: 

 
TinyML is characterized as an operational neural network model designed to 

function on less than 1 mW power. This results in a compact, portable device 
capable of supporting any application that necessitates intricate machine learning 
algorithms [15] Warden. Machine learning operates by forming a system model 
based on the input data from the programmer, a phase known as 'training.' Once the 
training phase concludes, the predictive data is fed into the model, a process referred 
to as 'inference' [15]. TensorFlow Lite was conceived to cater to projects intended 
for smaller-scale execution. It's engineered to run on just a few kilobytes of space, 
thus, the libraries don't rely on any operating systems, C or C++ dependencies, 
floating-point hardware, or dynamically allocatable memory [15]. The deep 
learning algorithms feasible for TinyML implementation encompass Convolutional 
Neural Networks (CNN), Support Vector Machines (SVM), or a hybrid approach 
known as Transfer Learning [16]. As demonstrated in [16], different emotions were 
classified using a deep neural network grounded on Raspberry Pi. The utilized 
machine learning API was Keras, employing TensorFlow for model definition and 
training. The model, a Deep Neural Network (DNN), comprises multiple CNN 
layers, Pooling layers, and Fully Connected (FC) layers. The cascading of 
convolution layers enables the model to learn an array of features while keeping the 
filter size minimal. Figure 1 is a Block diagram of flow of implementation of 
TinyML. 
 
 
 

 
 
 

Figure 1 Block diagram of flow of implementation of TinyML. 
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1) Data Collection: This is the initial stage in the implementation of a 

TinyML model. It involves gathering a substantial amount of relevant 
data that the model can learn from. This data can be collected from 
various sources and in various forms such as images, audio files, text, or 
numerical data. The data collected should be diverse and representative 
of the real-world scenarios that the model is expected to encounter. 
 

2) Data Processing: After collecting the data, the next step involves 
processing the data to prepare it for the model. This can involve various 
sub-steps including cleaning the data to remove any irrelevant or corrupt 
data, normalizing or standardizing data, handling missing data, and data 
augmentation. The goal here is to make the data more suitable for model 
training by converting it into a form that the model can understand and 
learn from. 

 
3) Model Design: This stage involves selecting an appropriate machine 

learning model based on the problem at hand. This could be a neural 
network, decision tree, or other types of models. In TinyML, this 
typically involves designing a neural network architecture which is 
compact yet sufficiently capable to handle the complexity of the task at 
hand. 

 
4) Model Training: Once the model has been designed, the next step is to 

train the model using the processed data. Training involves presenting 
the model with the input data and allowing it to make predictions. The 
model's predictions are then compared to the actual outcomes, and the 
model adjusts its internal parameters to improve its predictions. This 
process is repeated multiple times to minimize the prediction error. 

 
5) Model Evaluation and Optimization: After training, the model's 

performance is evaluated using a separate validation dataset that the 
model has not previously seen. This gives an unbiased estimate of the 
model's performance. If the model's performance is not satisfactory, 
hyperparameters are tweaked or changes are made in the architecture of 
the model to optimize its performance. 

 
6) Model Conversion: Once the model is optimized and satisfactory 

performance is achieved, the model is converted into a format that can 
be implemented on the target hardware, usually a microcontroller for 
TinyML applications. This often involves quantization or other 
techniques to reduce the size and complexity of the model. 

 
7) Model Deployment: The converted model is then deployed onto the 

target hardware. This involves programming the hardware with the 
model and any necessary inference code. The model is now ready to 
make predictions in the field. 
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8) Making Inferences: This is the final stage where the deployed model is 

now used to make predictions or inferences on new, real-world data. The 
model processes the input data, making inferences based on its training, 
and produces output that can be used to make decisions or further 
processes. 

 
B. Arduino nano BLE sense 

 
  The hardware component employed in this development project is the 
Arduino Nano 33 BLE Sense, as illustrated in Figure 2. This advanced platform is 
designed for the utilization of cutting-edge AI models. Under its hood, it houses a 
32-bit ARM Cortex-M4F microcontroller operating at 64MHz, equipped with 1MB 
of system memory and 256KB RAM. This compact controller delivers sufficient 
capability for the deployment of Tiny ML models. 
 

 
 
 

Figure 2 Arduino Nano 33- BLE 
 
 
Moreover, the Arduino Nano 33 BLE Sense is integrated with a plethora of sensors 
that measure variables such as temperature, brightness, proximity, touch, motion, 
and vibration. The comprehensive sensor suite embedded within this device makes 
it suitable for a wide array of applications. 
 
C. Edge Impulse 

 
  Edge Impulse is an integrated development platform specifically designed 
for developing machine learning models for edge devices. It offers a comprehensive 
set of tools and features that facilitate the entire development workflow, from data 
collection and preprocessing to model training and deployment. Edge Impulse 
provides a user-friendly interface where it can import and preprocess audio data, 
choose and configure signal processing blocks such as MFCC, and select learning 
blocks like Transfer Learning or Classification. It allows to train and optimize the 
model using curated datasets, evaluate its performance, and convert it into a format 



Open International Journal of Informatics (OIJI)                                                    Vol. 7 No. 2 
(2019) 
 
 

52 

suitable for deployment on the Arduino Nano BLE Sense board. Edge Impulse 
greatly simplifies the process of developing machine learning models for edge 
devices, providing a seamless and efficient experience for creating robust and 
accurate keyword spotting systems on the Arduino Nano BLE Sense. 
 
D. Phases of the project 

 
  These phases guide the development process of the keyword spotting 
project, leveraging Edge Impulse and Arduino Nano BLE Sense to create an 
efficient and accurate system for real-time keyword recognition. Figure 3 shows the 
project flow chart based on the steps and phases.  
 

a) Data Collection: Utilizing Edge Impulse's built-in recorder connected to 
Arduino Nano BLE 33, the sound is captured as 15-second audio samples, 
after that the sound is segmented.  
 

b) Data Segmentation: Each 15-second audio sample is split into smaller 
segments. Segmentation helps improve the efficiency of processing and 
allows for a more fine-grained analysis of the audio data. 

 
c) Impulse Creation and Configuration: to create an impulse in Edge 

Impulse, defining the processing block, learning block, and feature 
extraction settings. Here, set the window size and window increase, 
window Size: this parameter defines the length of each audio segment that 
will be processed. In other words, it determines how much audio data is 
considered at once. The window size is typically measured in 
milliseconds. Window Increase: This parameter, also known as hop size 
or stride, determines the overlap between consecutive windows. It defines 
how much the window should move forward in the data for the next 
segment. For example, if a window size of 1000 ms and the window 
increase of 200 ms, it means that every second window starts 500 ms (half 
a second) after the first one. This means there is a 20% overlap between 
consecutive windows. Processing Block specifies the chosen audio 
processing technique (e.g., MFCC, MFE). Learning Block determines the 
learning algorithm or approach (e.g., Transfer Learning or Classification) 
and feature Extraction extracts relevant features from the audio segments 
for training and analysis. 
 

d) Model Training: The model is trained using the curated dataset, and the 
training results are obtained. Training involves optimizing the model 
parameters using the labeled audio segments to learn and identify 
keyword patterns. 

 
e) Model Testing: The trained model is tested using a separate dataset to 

evaluate its performance and accuracy. Testing provides insights into the 
model's ability to correctly identify keywords in unseen audio samples. 
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f) Project Deployment: The project is deployed as an Arduino library, 
allowing for easy integration and use with Arduino Nano BLE Sense. The 
deployment ensures that the developed model and associated code are 
readily accessible and compatible with the target hardware. It’s worth 
mentioning that optimization can be achieved through either quantized or 
unoptimized approaches. Quantization refers to the process of reducing the 
precision of numerical values, such as converting floating-point numbers 
to fixed-point numbers with a limited range. On the other hand, 
unoptimized methods involve performing optimization without any 
specific adjustments or enhancements. The reason for choosing 
quantization is its ability to provide 100% accuracy after thorough testing. 
By reducing the precision of numerical values, quantization enables 
efficient storage and computation, resulting in optimized performance. 
This technique is particularly useful in scenarios where computational 
resources are limited, as it allows for faster and more efficient execution. 

 
 

 
 

Figure 3 shows the project flow chart. 
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4. Results and Discussion.  
 

After successfully collecting data, the extensive tests using different 
processing blocks and learning blocks to determine the optimal configuration for 
machine learning project. The results of these tests are presented in Table 1, which 
summarizes the performance metrics of each configuration.  
 

Table 1 Performance Comparison of Different Processing and Learning Blocks 
 

Processing 
Block 

Learning 
Block 

Training 
Accuracy 

Loss Test 
Accuracy 

Created 
features 

Audio 
(MFE) 

Transfer 
learning 
(Keyword 
Spotting) 

%100 0.40 %83.33 5710 

Audio 
(MFE) 

Classification %88.8 0.23 %100 5160 

Audio 
(MFCC) 

Classification %93.8 0.21 %90.1 845 

 
The table provides a summary of the training accuracy, loss, test accuracy, and the 
number of created features for each combination of processing and learning blocks. 
The first configuration, utilizing the Audio (MFE) processing block with Transfer 
Learning (Keyword Spotting) as the learning block, achieved a training accuracy of 
100%, a loss of 0.40, and a test accuracy of 83.33%, with 5710 features created. The 
second configuration, using Audio (MFE) with Classification as the learning block, 
achieved a training accuracy of 88.8%, a loss of 0.23, and a perfect test accuracy of 
100%, with 5160 features created. Lastly, the third configuration, which shows the 
best results out of them, employing Audio (MFCC) with Classification as the 
learning block, achieved a training accuracy of 93.8%, a loss of 0.21, and a test 
accuracy of 90.1%, with 845 features created. 
 

Table 2. Impact of Training Cycles and Learning Rate on Model Accuracy 
Number of 
training 
cycles 

Learning 
rate 

Model 
Training 
Accuracy 

Loss Model 
Testing 
Accuracy 

100 0.005 %80 0.41 %84 
120 0.005 %94.7 0.14 %91.7 
150 0.006 %92.4 0.18 %90 
200 0.008 %100 0.00 %100 
220 0.009 %94.33 0.12 %93.33 
250 0.009 %100 0.06 %83.33 

 
The table illustrates the influence of different training cycles and learning rates on 
the model's performance. As the number of training cycles increased from 100 to 
250, its observed varying levels of accuracy and loss. Notably, the best overall 
accuracy was achieved with 200 training cycles and a learning rate of 0.008, 
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resulting in 100% accuracy in both model training and testing. Figures 4 and 5 show 
the model training and testing results. 
 

 
Figure 1. Model Training Results 

 
These results highlight the importance of optimizing the training cycles and learning 
rate to maximize the model's accuracy. Through iterative adjustments, the 
identification for ideal combination that yielded the highest level of accuracy for 
keyword spotting project. 
 

 
Figure 2. Model Testing Results 

 
 

4. Conclusion  
 
The successfully developed a unique keyword spotting system that excels at 
identifying the critical keyword "help" in multiple languages, including English, 
Arabic, Kurdish, and Malay. This system harnesses the power of the Arduino Nano 
33 BLE Sense board and leverages the capabilities of Edge Impulse for data 
processing and model training. In pursuit of the most effective approach, the 
combined the Mel Frequency Cepstral Coefficients (MFCC) processing block with 
the Classification learning block. This combination proved to be the optimal choice, 
resulting in outstanding performance. Furthermore, the employment of Quantized 
(int8) optimization techniques to ensure efficient utilization of resources without 
compromising accuracy. Through rigorous training and testing, the model exhibited 
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an exceptional accuracy rate of 100% in both the training and testing phases. This 
high level of accuracy is a testament to the effectiveness of the chosen approach and 
the robustness of the keyword spotting system. By accurately identifying the 
keyword "help" across multiple languages, the system is well-equipped to support 
emergency response scenarios and improve safety in various environments. 
Whether it is in bustling public spaces, hospitals, schools, or other critical areas, the 
keyword spotting system stands ready to provide immediate assistance. The 
successful development of this system highlights the effectiveness of the MFCC 
processing block, Classification learning block, and the careful optimization of the 
model. These achievements pave the way for further advancements in the field of 
speech recognition and demonstrate the potential for creating innovative solutions 
that contribute to a safer and more responsive world. 
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