
Open International Journal of Informatics (OIJI) Vol. 10 No. 2 (2022)

* Corresponding author. imran98@graduate.utm.my

 124

Monolith Application to Microservices Model

Driven Analysis Migration: State-of-The-Art

Techniques

Muhammad Imran Mohamad Sasudin*1, Hazlifah Mohd Rusli2

and Nazri Kama3

1,2,3Advanced Informatics Department, Razak Faculty of

Technology and Informatics, Universiti Teknologi Malaysia
1imran98@graduate.utm.my, 2hazlifah@utm.my,

3mdnazri@utm.my

Article history

Received:

18 Sept 2022

Received in revised

form:

29 Nov 2022

Accepted:

1 Dec 2022

Published online:

15 Dec 2022

*Corresponding

author

imran98@graduate.ut

m.my

Abstract

Microservices architecture has become enormously popular as traditional monolithic architectures

no longer meet the needs of scalability and rapid development cycle. Furthermore, the success of

large companies in building and deploying services is a strong motivation for others to consider

making the change. However, performing the migration process is not trivial. Most systems acquire

too many dependencies between their modules and thus cannot be sensibly broken apart. For this

reason, studies that provide information associated with the migration process to practitioners are

necessary. Existing migration techniques are categorized into three main approaches: static

analysis, dynamic analysis, and model-driven analysis. This paper focuses on the model-driven

analysis approach. A literature search was conducted using search strings to discover recent

migration approaches based on model-driven analysis. The migration steps were extracted and

identified for each proposed model-driven analysis technique. Based on identified migration steps

from each proposed model-driven analysis technique, a migration model is generated by combining

all steps from all techniques and simplifying it with three incremental versions of the simplification

model. By understanding the differences and similarities between the approaches, the strength and

weaknesses of each technique can be identified.

Keywords: microservices architecture, monolith, software migration, model-driven analysis

1. Introduction

Microservices Architecture (MSA) is a cloud-native architectural style inspired

by Service-Oriented Architecture (SOA). It consists of small, autonomous services

that communicate and work together. MSA allows organizations to deliver software

faster, respond quicker to change, and embrace newer technologies. Some of the

world's most innovative and lucrative businesses, such as Amazon, Netflix, Uber,

and Etsy, owe their massive success in IT efforts to microservices. Migrating a

monolithic system into a microservice is a long and challenging process that

requires much effort from the stakeholders. Proper decomposition of monolith into

microservices with appropriate granularity can be seen as the main challenge in

architectural migration. There exist several approaches for extracting and

identifying candidate microservices, such as model-driven analysis [1]–[5], static

analysis [6]–[8], and dynamic analysis [9]–[11].

Open International Journal of Informatics (OIJI) Vol. 10 No. 2 (2022)

125

Migrating a monolithic system into a microservice is a long and difficult

process that requires much effort from the stakeholders. Proper decomposition of

the monolith into microservices with the appropriate granularity can be seen as the

main challenge in architectural migration. Despite all those proposed approaches,

there is still a lack of standard metrics for evaluating these techniques.

Most migration efforts fail due to poor planning, frequently due to cost

miscalculation (typically a significant understatement) [12]. Finding the proper

service cut and developing the requisite skills with new technologies is a huge

technical issue. Most businesses take a non-systematic or personalized approach to

consider service cuts [13]. Migrating from a monolithic architecture to a

microservices ecosystem is a long and winding road [14]–[17]. Hence, if the

migration plan is done correctly, the tendency for the migration to fail can be

reduced. To properly plan a software migration, the cost is an essential element to

consider[12]. However, there is no best way to migrate from monolith to

microservice application in microservice migration. There is only successful

migration and good migration practice [14].

This paper discusses the differences and similarities in terms of the general

steps in service identification and extraction between state-of-the-art migration

techniques based on model-driven analysis. A comparison table on state-of-the-art

migration techniques is produced.

The organization of the paper is as follows. Section 2 discusses similar review

articles on state-of-the-art techniques for migrating from monolith to microservices.

Section 3 discusses the methodology involved in gathering state-of-the-art

migration techniques. Next, the state-of-the-art migration techniques will be

discussed in Section 4, and finally, Section 5 will conclude the article.

2. Related Work

Several research papers have described reviews on state-of-the-art techniques

for microservices migration.

Ponce, Marquez, and Astudillo (2019) gathered, organized, and analysed 20

monolith-to-microservice migration techniques. This paper identifies 20 migration

approaches from all three categories, some of which are hybrid. This paper also

identifies which category the migration approach belongs to. However, this paper

mainly describes general information related to identified migration approaches,

such as the category, proposed programming language, and database migration.

There is no analysis on the cost or time of any identified migration approaches.

Kazanavicius and Mazeika (2019) elaborated on the benefits and drawbacks of

6 of the migration approaches from monolith architecture to microservice

architecture. However, this paper only elaborated on the technical benefits and

drawbacks without considering other important factors in software development,

such as cost and time.

Open International Journal of Informatics (OIJI) Vol. 10 No. 2 (2022)

126

3. Methodology

The methodology used in this research was a literature search from several

databases such as Web of Science, ScienceDirect, and Scopus. The articles were

selected based on search strings "monolith to microservice migration techniques".

The articles were selected regardless of their category and domain. Some articles

were also discovered and selected based on state-of-the-art techniques described in

related work or references.

There are two domains regarding migration techniques from monolith to

microservice architecture: infrastructure and application. The approaches were

categorised based on their domain and category by reading and understanding the

selected articles. Three categories and two domains are identified in this process.

The three categories are static analysis, dynamic analysis, and model-driven

analysis. Based on the identified approaches, we select only approaches with model-

driven analysis categories and application domains. As a result, ten migration

approaches were chosen to be used in this study and will be described in section 4.

4. State-Of-The-Art Model-Driven Analysis Migration Techniques

Several state-of-the-art model-driven analysis techniques have been

identified in our study. Table 1 shows the list of state-of-the-art migration

techniques for model-driven analysis. The table shows the author, year, and

migration steps involved in each approach.

Table 1. State-of-The-Art Migration Techniques

Number Author and

Year

Migration Steps

1 Kuryazov,

Jabborov, and

Khujamuratov

(2020)

1. Identify how tightly coupled the parts within

the system are.

2. Extract metadata and business logic of the

system.

3. Correct, improve, optimize or reimplement

any extracted microservices

4. Orchestrate applicable services based on

certain data and control flow to fulfill the

software system's business logic.

2 Amiri (2018) 1. Define two relations regarding their

structural and data dependencies for each

pair of activities in a process model.

2. Define the final relation between activities

by aggregating the relations

3. Use the relation to cluster activities and

identify microservices.

3 Sayara,

Towhid, and

Hossain

(2018)

1. Identify the broad business capabilities.

2. Break down business capabilities into sub-

business capabilities

Open International Journal of Informatics (OIJI) Vol. 10 No. 2 (2022)

127

3. Find and determine the independent update

probability of the services.

4. Construct update matrix.

5. Modify the updated matrix to get the scaling

matrix.

6. Apply the Multidimensional Scaling

Technique (MDS) to group similarly

weighted element.

7. Identify technology conflict (if any). Service

that needs to use different technology needs

to be a standalone service.

4 Li, Ma, and

Lu (2020)

1. Analyze the monolith and divide it into

modules.

2. Create a service registry and an API

gateway.

3. Select a service based on ratings to replace

the module implementation.

4. Develop the service.

5. Design integration glue.

6. Remove the target legacy module.

5 Chen, Li, and

Li (2018)

1. Engineers, together with users, conduct

business requirement analysis and construct

a purified while detailed dataflow diagram

of the business logic.

2. An algorithm combines the same operations

with the same type of output data into a

virtual abstract dataflow.

3. The algorithm extracts individual modules

of "operation and its output data" from the

virtual abstract dataflow to represent the

identified microservice candidates

6 Tyszberowicz,

Heinrich, Liu,

and Liu

(2018)

1. Analyze the use case specifications (write

out their detailed descriptions if needed).

2. Identify the system operations and state

variables (based on the use cases and their

scenarios).

3. Create an operation/relation table.

4. Advise a possible decomposition into highly

cohesive and low coupled components

(using a visualization tool).

5. Identify the microservices APIs.

6. Identify the microservices databases.

7. Implement the microservices (using

RESTful protocols to communicate between

microservices).

8. Deploy.

7 Fan and Ma

(2017)

1. Analyse the internal system architecture

using Domain-Driven Design (DDD).

Open International Journal of Informatics (OIJI) Vol. 10 No. 2 (2022)

128

2. Determine whether the database schema is

consistent with the candidate microservices

and the filtering out of inappropriate

candidates.

3. Extract and organize code related to the

service candidates using Java.

4. Treat the Java interface as a temporary

service interface to ease communications

between services.

5. After service code extraction, the operator

selects a communications protocol, data

format, and microservice framework.

6. Finally, the Java interfaces are transformed

into actual service interfaces, such as REST

or MQTT, after which service invocations

are implemented to enable communication

between the various services.

8 Ahmadvan

and Ibrahim

(2016)

1. Identify security requirements in a system.

2. Initialize the model with a list of functional

requirements and security policies.

3. Determine the level of scalability required

for each functional requirement.

4. Balance scalability and security.

5. Extract microservice based on the

reconciliation result.

9 Michael

Gysel, Lukas

Kölbener,

Wolfgang

Giersche, and

Olaf

Zimmermann

(2016)

1. Decompose input.

2. Decompose process.

3. Integrate algorithm.

4. Prioritize scoring.

10 Levcovitz,

Terra, and

Valente

(2016)

1. Map the database tables into subsystems.

2. Create a dependency graph.

3. Identify parts.

4. For each subsystem, select pairs identified in

the previous step.

5. Identify candidates to be transformed on

microservices.

6. Create API gateways.

Some of the papers have similarities in terms of the migration steps. For

example, 9 out of 10 articles contain an analysis step for the first step. The

differences between the analysis process between the techniques are the

artifacts and items that are analysed, which are the database schema, system

security, use case specifications, domain-driven design architecture, and

coupling between the systems.

Open International Journal of Informatics (OIJI) Vol. 10 No. 2 (2022)

129

Amiri (2018) began service extraction without analysis in the first step. The

technique assumes the existence of an analysis diagram (BPMN diagram) to

extract microservice candidates. The paper is also the only one that evaluates

its own approach's accuracy by comparing it with different microservice

identification approaches. The evaluation initiative gives more confidence and

better validation to ensure the approach is on the same track as the other

approaches. Based on each analysis result, each approach moves to the next

step, extraction, using the analysis result using its extraction formula.

A monolith-to-microservices migration model is produced based on the

analysis of all ten state-of-the approaches. The following section describes how

the migration model is derived.

5. Derivation of the Migration Model

To derive the migration model, the first step is to generalize each technique's

migration steps. Table 2 lists the selected migration techniques for model-

driven analysis. The table shows the author, year, and general steps involved

in each approach. The steps are generalised from the steps listed in Table 1 in

the previous section and consist of Analysis, Extract, Conflict Identification,

Refactor, Develop, Integrate, Evaluate and Deploy.

Table 2. State-of-The-Art Model-Based Migration Techniques

Number Author and Year Findings (General step)

1 Kuryazov, Jabborov, and

Khujamuratov (2020)

Analysis, Extract, Refactor,

Integrate

2 Amiri (2018) Extract, Evaluate

3 Sayara, Towhid, and Hossain

(2018)

Analysis, Extract, Conflict

Identification

4 Li, Ma, and Lu (2020) Analysis, Extract, Develop

5 Chen, Li, and Li (2018) Analysis, Extract

6 Tyszberowicz, Heinrich, Liu, and

Liu (2018)

Analysis, Extract, Develop,

Deploy

7 Fan and Ma (2017) Analysis, Extract, Develop

8 Ahmadvand, and Ibrahim (2016) Analysis, Extract

9 Michael Gysel, Lukas Kölbener,

Wolfgang Giersche, and Olaf

Zimmermann (2016)

Analysis, Extract

10 Levcovitz, Terra, and Valente

(2016)

Analysis, Extract, Develop

The objective of generalizing the steps is to simplify all the steps into more

standardized terms in software development. The first version of the model is

constructed by unifying all of these steps. Figure 1 shows the first version of the

state-of-the-art model.

Open International Journal of Informatics (OIJI) Vol. 10 No. 2 (2022)

130

Figure 1. First Version of the Migration Model

Based on the first version of the migration model, four components which are

Refactor, Integrate, Develop and Deploy are grouped under Develop component as

the processes are related to the development. Figure 2 shows the second version of

the migration model.

Figure 2. Second Version of the Migration Model

Open International Journal of Informatics (OIJI) Vol. 10 No. 2 (2022)

131

The model is further simplified by eliminating the 4 components and putting

them under the Develop component. Figure 3 shows the third version of the

migration model.

Figure 3. Third Version of The State-of-The-Art Migration Model

The third version of the model is the finalized summary of the migration model.

This model indicates the general processes for all ten state-of-the-art approaches for

model-driven analysis migration techniques.

6. Conclusion

In conclusion, a literature search has identified several state-of-the-art migration

techniques in this study. Different migration techniques require different steps, and

each step has its guidelines to be executed. A monolith-to-microservices migration

model based on model-driven analysis was derived from the identified state-of-the-

art approaches. The purpose of deriving the model is to help understand the

differences and similarities between the approaches, which will support future work

to identify the approaches' strengths and weaknesses. The strength and weaknesses

can also be determined by experiencing those approaches when migrating monolith

to microservice applications. These findings will then be used further to solve the

main research problem.

Acknowledgement

The study is financially supported by the Encouragement Research Grant

Scheme (Vote No. Q.K130000.3856.20J92) awarded by University Teknologi

Malaysia.

Open International Journal of Informatics (OIJI) Vol. 10 No. 2 (2022)

132

References

[1] C. Y. Fan and S. P. Ma, 'Migrating Monolithic Mobile Application to Microservice Architecture: An Experiment

Report', Proceedings - 2017 IEEE 6th International Conference on AI and Mobile Services, AIMS 2017, pp. 109–

112, 2017, doi: 10.1109/AIMS.2017.23.

[2] A. Sayara, M. S. Towhid, and M. S. Hossain, 'A probabilistic approach for obtaining an optimized number of

services using weighted matrix and multidimensional scaling Md. Shamim Towhid', in 20th International

Conference of Computer and Information Technology, ICCIT 2017, 2018, vol. 2018-Janua, pp. 1–6. doi:
10.1109/ICCITECHN.2017.8281804.

[3] R. Chen, S. Li, and Z. Li, 'From Monolith to Microservices: A Dataflow-Driven Approach', Proceedings - Asia-

Pacific Software Engineering Conference, APSEC, vol. 2017-Decem, pp. 466–475, 2018, doi:

10.1109/APSEC.2017.53.

[4] M. J. Amiri, 'Object-Aware Identification of Microservices', in 2018 IEEE International Conference on Services
Computing (SCC), 2018, pp. 253–256. doi: 10.1109/SCC.2018.00042.

[5] C. Y. Li, S. P. Ma, and T. W. Lu, 'Microservice Migration Using Strangler Fig Pattern: A Case Study on the Green

Button System', Proceedings - 2020 International Computer Symposium, ICS 2020, pp. 519–524, 2020, doi:

10.1109/ICS51289.2020.00107.

[6] S. Eski and F. Buzluca, 'An automatic extraction approach - Transition to microservices architecture from
monolithic application', ACM International Conference Proceeding Series, vol. Part F1477. 2018. doi:

10.1145/3234152.3234195.

[7] H. Knoche and W. Hasselbring, 'Using Microservices for Legacy Software Modernization', IEEE Softw, vol. 35,

no. 3, pp. 44–49, 2018, doi: 10.1109/MS.2018.2141035.

[8] A. Krause, C. Zirkelbach, W. Hasselbring, S. Lenga, and D. Kroger, 'Microservice Decomposition via Static and
Dynamic Analysis of the Monolith', Proceedings - 2020 IEEE International Conference on Software Architecture

Companion, ICSA-C 2020, pp. 9–16, 2020, doi: 10.1109/ICSA-C50368.2020.00011.

[9] D. Taibi and K. Systä, 'From Monolithic Systems to Microservices: A Decomposition Framework based on Process

Mining', in Proceedings of the 9th International Conference on Cloud Computing and Services Science - CLOSER,

2019, pp. 153–164. doi: 10.5220/0007755901530164.
[10] W. Jin, T. Liu, Q. Zheng, D. Cui, and Y. Cai, 'Functionality-Oriented Microservice Extraction Based on Execution

Trace Clustering', in Proceedings - 2018 IEEE International Conference on Web Services, ICWS 2018 - Part of the

2018 IEEE World Congress on Services, 2018, pp. 211–218. doi: 10.1109/ICWS.2018.00034.

[11] W. Jin, T. Liu, Y. Cai, R. Kazman, R. Mo, and Q. Zheng, 'Service Candidate Identification from Monolithic Systems

Based on Execution Traces', IEEE Transactions on Software Engineering, vol. 47, no. 5, pp. 987–1007, 2021, doi:
10.1109/TSE.2019.2910531.

[12] H. M. Sneed and C. Verhoef, 'Cost‐driven software migration: An experience report', Journal of Software:

Evolution and Process, vol. 32, no. 7, Jul. 2020, doi: 10.1002/smr.2236.

[13] J. Fritzsch, J. Bogner, S. Wagner, and A. Zimmermann, 'Microservices Migration in Industry: Intentions, Strategies,

and Challenges', in 2019 IEEE International Conference on Software Maintenance and Evolution (ICSME), Sep.
2019, pp. 481–490. doi: 10.1109/ICSME.2019.00081.

[14] J. Kazanavicius and D. Mazeika, 'Migrating Legacy Software to Microservices Architecture', 2019 Open

Conference of Electrical, Electronic and Information Sciences, eStream 2019 - Proceedings, 2019, doi:

10.1109/eStream.2019.8732170.

[15] V. Velepucha and P. Flores, 'Monoliths to microservices - Migration Problems and Challenges: A SMS', in 2021
Second International Conference on Information Systems and Software Technologies (ICI2ST), Mar. 2021, pp.

135–142. doi: 10.1109/ICI2ST51859.2021.00027.

[16] J. Carlos Ribeiro Dias Neves, 'Technical Challenges of Microservices Migration', Instituto Politecnico do Porto

(Portugal) ProQuest Dissertations Publishing, Oct. 2019.
[17] F. Zapata, O. Lerma, L. Valera, and V. Kreinovich, 'How to speed up software migration and modernization:

Successful strategies developed by precisiating expert knowledge', Annual Conference of the North American Fuzzy

Information Processing Society - NAFIPS, vol. 2015-September, Sep. 2015, doi: 10.1109/NAFIPS-

WCONSC.2015.7284166.

[18] F. Ponce, G. Marquez, and H. Astudillo, 'Migrating from monolithic architecture to microservices: A Rapid
Review', Proceedings - International Conference of the Chilean Computer Science Society, SCCC, vol. 2019-

Novem, 2019, doi: 10.1109/SCCC49216.2019.8966423.

[19] D. Kuryazov, D. Jabborov, and B. Khujamuratov, 'Towards Decomposing Monolithic Applications into

Microservices', 14th IEEE International Conference on Application of Information and Communication

Technologies, AICT 2020 - Proceedings, pp. 2–5, 2020, doi: 10.1109/AICT50176.2020.9368571.
[20] S. Tyszberowicz, R. Heinrich, B. Liu, and Z. Liu, 'Identifying Microservices Using Functional Decomposition',

2018, pp. 50–65. doi: 10.1007/978-3-319-99933-3_4.

[21] M. Ahmadvand and A. Ibrahim, 'Requirements Reconciliation for Scalable and Secure Microservice

(De)composition', in 2016 IEEE 24th International Requirements Engineering Conference Workshops (REW), Sep.

2016, pp. 68–73. doi: 10.1109/REW.2016.026.
[22] M. Gysel, L. Kölbener, W. Giersche, and O. Zimmermann, 'Service Cutter: A Systematic Approach to Service

Decomposition', 2016, pp. 185–200. doi: 10.1007/978-3-319-44482-6_12.

[23] A. Levcovitz, R. Terra, and M. T. Valente, 'Towards a Technique for Extracting Microservices from Monolithic

Enterprise Systems', May 2016.

	Abstract

