
Open International Journal of Informatics (OIJI) Vol. 10 No. 2 (2022)

78

An Improved Object Detection Model based on

Optimised CNN

Senthil Kumar Jayapalan1, Syahid Anuar*2

1,2Razak Faculty of Technology and Informatics,

Universiti Teknologi Malaysia,

Kuala Lumpur, Malaysia
1kjsenthil@graduate.utm.my,2syahid.anuar@utm.my

Article history

Received:

13 Sept 2022

Received in revised

form:

29 Nov 2022

Accepted:

10 Dec 2022

Published online:

15 Dec 2022

*Corresponding

author

syahid.anuar@utm.my

Abstract

Object detection is a computer vision technique that gives the ability to individually locate,

recognise, and interpret multiple objects in an image with a better understanding. Modern image

understanding tasks like image classification have been improved by state-of-the-art deep learning

methods, particularly by convolutional neural networks (CNN). Region-based object detection

algorithms such as Fast-RCNN achieve classification by CNN but over a longer period of time. You

only look once (YOLO) prompts the object location and classification, treating object detection as a

regression problem in an end-to-end network in a single step, whereas its accuracy decreases when

the image has similar objects in a confined area, particularly when independent of the surrounding

context. The aim of the current study is to improve YOLOv3 by optimising Darknet-53 to address the

memory issue, using switchable normalisation techniques. We investigated the performance of five

pre-trained networks, SqueezeNet, GoogleNet, ShuffleNet, Darknet-53, and Inception-V3, using a

confusion matrix employing various epochs, learning rates, and mini-batches based on transfer

learning. Darknet-53 took five times longer to complete the training and also ran into errors, most

likely due to GPU memory shortages, whereas GoogleNet virtually obtained the same results in a

fraction of the time. Using switchable normalisation techniques with the 10 class CIFAR-10 dataset,

and utilising deep network designer (DND) of MATLAB R2021a, optimised versions of Darknet-53

increased the validation accuracy, considerably reducing the training time, and rectified the memory

issue, which were then used as a backbone for YOLOv3 for effective object detection. The enhanced

YOLOv3 was then assessed using a vehicle dataset and a sample Kuala Lumpur traffic scene using

average precision. YOLOv3 with optimised CNN dNet-CIN as the backbone produced the best

experimental results, with an FPS of 3.21 and a mAP-50 of 97%.

Keywords: Object Detection, Transfer Learning, Computer Vision, Optimisation, CNN.

1. Introduction

Object detection is the ability to locate an instance of an object in any image, and

object recognition is the ability to determine whether a given object belongs to a

specific class. Object extraction from natural images, along with image processing,

is often considered an elementary and critical problem in the field of computer

vision. Meanwhile, research in this area has revealed that it is still a looming and

overwhelming challenge [1]. This is due to the fact that images of natural

environments depict real-world adaptations, which are distinguished by a wide

range of shapes, colours, and textures. In particular, with regard to some challenging

issues in other computer vision tasks, such as objects under different viewpoints,

Open International Journal of Informatics (OIJI) Vol. 10 No. 2 (2022)

79

illuminations, and intraclass variations, the challenges in object detection include,

but are not limited to, the following aspects: object rotation and scale changes,

accurate object localisation, dense and occluded object detection, rise in detection

speed, and so on [2]. Deep learning techniques are currently used to drive high-

performance vision systems. In terms of speed and accuracy, deep learning-based

object detection outperforms classical machine learning techniques [3]. Deep

networks may face obstacles and hurdles throughout the training process, such as

exploding/vanishing gradients and degradation. When the depth of a network

exceeds the maximum, it suffers from the degradation problem, which results in a

decline in accuracy [4]. Although deeper networks are more accurate due to

vanishing/exploding gradient information during network training, merely

increasing the number of layers alone will not enhance accuracy indefinitely [5].

The internal covariate shift, which is the change in the distribution of the input data

to a layer during training, is another matter of concern. CNN's unique qualities, such

as incremental feature extraction in subsequent layers, make it possible to use parts

of a pre-trained model for a completely new task without retraining the entire

network. Transfer learning is a technique that may be used to retrain a CNN model

that has been trained on a large dataset.

1.1 Study Background

The field of detecting and classifying objects in real-time images has made

substantial progress, but it still has some shortcomings, especially with objects that

occupy smaller areas and are similar in shape [6]. R-CNN and other most recent

approaches generate potential bounding boxes in an image using region proposal

methods before running a classifier on these proposed boxes [7]. Some region-based

object detection algorithms, such as Fast R-CNN, achieve classification over CNN

by extracting proposals, but it takes a long time [8][3]. The architectures such as

Faster R-CNN are precise, but the model itself is very complex, whereas a pre-

trained network is ideal for object proposals to be classified. Nevertheless, both

training and testing are inefficient because the network performs a forward pass on

each and every object proposal independently [9]. Convolutional filters are

deliberately applied to thousands of redundant and expensive object proposals.

Single Shot Detector (SSD) is a popular object detection algorithm that was

developed by Google Inc. It is based on the VGG-16 architecture which gives only

10-20% less average precision [10]. Joseph Redmon et al. proposed a state-of-the-

art object detector named YOLO (You Only Look Once), which outperforms the

other object detectors like Fast R-CNN. In YOLO, it is proposed to incorporate

object position and classification by a single CNN [3]. It is currently one of the

fastest algorithms known for its detection speed. However, it shows a substantial

inaccuracy in the recognition of tiny targets, making it difficult to detect targets

accurately in complicated backgrounds [11]. YOLO trains on full images and

optimises its detection performance directly. However, due to the strong spatial

constraints imposed on bounding box predictions, it faces difficulty in dealing with

small objects in groups [7] [12]. A slight drop in accuracy is increased with the use

of anchor boxes. While the mean average precision (mAP) declines, the

improvement in recall means more space for the model to boost accuracy [13].

Open International Journal of Informatics (OIJI) Vol. 10 No. 2 (2022)

80

2. Related Studies

The previous studies have been primarily focused on the detection of various

objects, vehicles, human detection, and face detection using YOLO. In some of the

previous studies, not only the detection of objects but also the counting of objects

like vehicles and people has been carried out by using traffic video records [14].

Alvar et al. modified the algorithm into a motion vector: MV-YOLO to track the

motion information of vehicles from the compressed video stream [15]. Xu et al.

(2018) proposed a new method called Dense YOLO to improve the original

YOLOv2 structure and tested the performance of that model with other one-stage

detection models in an aerial dataset with an accuracy achieved of 76.2% with a

detection speed of 26 frames per second [16]. Yi Tan et al. proposed a unique

technique to detect vehicles based on change detection followed by the generation

of vehicle proposals, whereas the CNN classifier determined the proposal as non-

vehicle and vehicle. From the previous studies, it is clear that deep learning based

CNNs play a part in the detection and classification of objects. Most of the research

work focused on the detection of vehicles, whereas some authors even classified the

vehicles based on colour and type [3]. The YOLOv3 version has been used for the

majority of the application studies beside the optimisation of YOLO. Some of the

major applications were moving object detection via motion prediction, multiple

object tracking, obstacle detection, pedestrian detection, object detection in foggy

conditions, real-time abandoned baggage detection and people counting approach.

Transfer Learning has been utilised in a range of fields by fine-tuning pre-

trained CNN models learned on ImageNet. The earlier studies on pre-trained CNNs

based on transfer learning that uses CIFAR-10 and 100 datasets performed image

classification on the embedded systems, used to train very deep residual attention

networks, and used to evaluate the performance of deep learning models using

MNIST and CIFAR-10 datasets. Similar to the scope of the present study, some of

the previous studies were using CIFAR-10 with batch normalisation and ELU

activation to test the performance of residual networks [17], and to find the impact

of training set batch size [18]. YOLO, a state-of-the-art deep learning algorithm,

seems to be the fastest when it comes to object detection but still lags in accuracy

with other methods like Faster R-CNN. The aim of the current study is to improve

YOLOv3 by optimising Darknet-53 to address the memory issue, using switchable

normalisation techniques.

3. Methodology

CNN is a special form of neural network that is more suitable for computer vision

tasks because of its capability. Currently, CNN-based object detection techniques

are in use, which has three layers: convolution, pooling, and fully connected.

Girshick et al.'s approach, based on linear classifiers with CNN-derived features,

was the first to conclusively defeat HOG with DPM, with a mean average precision

gain of roughly 20 percentage points across the 20 PASCAL VOC 2007 dataset

classes [25]. Deep neural network training is difficult because the dispersion of each

layer's inputs varies during training as the parameters of the preceding layers

change. The requirement of lower learning rates and exact parameter initialisation

slows down training, and thus makes training models with saturating nonlinearities

Open International Journal of Informatics (OIJI) Vol. 10 No. 2 (2022)

81

notoriously difficult. This is known as internal covariate shift, which is probably

handled by normalising layer inputs [26]. Many normalisation algorithms, such as

batch normalisation (BN), group normalisation (GN), instance normalisation (IN),

and layer normalisation (LN), have been developed in recent years as crucial

components of deep learning, as shown in Figure 1. Batch normalisation allows us

to use much higher learning rates while being less concerned with initialisation. It

also serves as a regulariser, minimizing the need for dropouts in some cases.

Normalisation techniques are essential for improving neural network training and

generalisation. Many studies have shown that this enhances optimisation and allows

deep networks to merge [27]. Batch normalisation is a key technique in the

advancement of deep learning, allowing diverse networks to train. Many methods

have demonstrated that this facilitates optimisation and allows very deep networks

to converge. The stochastic uncertainty of the batch statistics functions as a

regulariser, which can help with generalisation.

Figure 1. Normalisation Methods with a Feature Map Tensor [27]

Despite its enormous success, BN has limitations, which are exacerbated by its

unique behaviour of normalising along the batch dimension. BN must, in particular,

work with a suitably large batch size. Despite their considerable success, existing

techniques frequently used the same normaliser in all normalisation layers of a

network, resulting in inferior performance. Furthermore, multiple normalisers are

utilised to tackle different tasks, making model creation more difficult. To address

the aforementioned difficulties, Luo et al. introduced switchable normalisation

(SN), which combines three forms of statistics calculated channel-wise, layer-wise,

and minibatch-wise using IN, LN, and BN, as presented in Figure 2.

Figure 2. Switchable Normalisation Method [28]

Switchable normalisation is a normalisation technique capable of learning

alternative normalisation operations for distinct normalisation layers in end-to-end

manner in a deep neural network. IN primarily occurs in lower layers to eliminate

Open International Journal of Informatics (OIJI) Vol. 10 No. 2 (2022)

82

variability in low-level features, LN appears in deeper levels to improve learning

ability, and BN appears in the center [29]. According to the author, adopting a single

normalisation method uniformly is not the best way to normalise the layers. Image

categorisation and object detection, for example, favour a mix of three normalisers.

3.1 Data Preparation

In order to encourage computers to view images as object compositions, data

plays a particularly critical role, an accomplishment that humans can do seamlessly

while so far it has been obscuring for machines. In particular, humans would like

machines to automatically identify what objects are present in an image, where they

are precisely located, and which of them interact and how they interact [19]. All

throughout the history of object recognition work, datasets have played an important

role, not only as a common ground for assessing and comparing the performance of

competing algorithms, but also in driving the field toward increasingly complex and

difficult challenges. Figure 3 depicts the course of sequence in the data preparation

that explains the selection and collection of datasets. Fundamentally, the dataset

selection is divided into 2 major categories: object classification datasets

responsible for feature extraction and object detection datasets, which are

responsible for object localization and feature detection.

Figure 3. Selection and Collection of Dataset

CIFAR-10 is currently one of the most widely used benchmark datasets in

machine learning and serves as a test ground for many computer vision methods. A

concrete measure of popularity is the fact that CIFAR-10 was the second most

common dataset in NIPS 2017 [20]. The benchmark image classification dataset,

CIFAR-10, was chosen for the object classification. For object detection, a

MATLAB-based vehicle dataset and a traffic scene from Kuala Lumpur are used.

There are no rigid rules for separating training and test datasets, although the most

typical split ratios are 80:20; 70:30; and 60:40, depending on the nature of the issue,

the size of the dataset, and the architecture utilised. In this definition, a training

dataset is used to build the model, and a test dataset is used to evaluate the model's

predictive ability. Researchers have noted that the performance of the model

performed best when the training-to-test ratio was 70:30 to distinguish between the

Data
Collection

Data
Category

Data
Preparation

Dataset

Object
Classification

CIFAR-10
Dataset

Object
Detection

Vehicle
Dataset

Traffic
Scene KL

Open International Journal of Informatics (OIJI) Vol. 10 No. 2 (2022)

83

datasets [21]. The CIFAR-10 dataset has 32 x 32 colour images that are divided into

ten classes, each with 5000 training images and 1000 test images [22]. It contains

ten classes with a total of 50,000 training images and 10,000 testing images. In

addition, image augmentation was performed at random on the training datasets

using different values to expand the dataset. The vehicle dataset is a MATLAB

built-in dataset that consists of 295 images that each contain one or two labelled

instances of a vehicle. The images are 720-by-960-by-3 in size, and this small data

set is useful for investigating the object detection training procedure, which is then

used to test the improved YOLOv3 model. The data is extracted and loaded into the

workspace, and the ground truth labels, and bounding boxes are stored in a mat file,

which is then extracted and stored as vehicleDataset. During the training phase, the

images in each batch were randomly subjected to the following operations, as

specified in the majority of the MATLAB examples: horizontal reflection;

horizontal and vertical translation with a random value in the range [-30 30] pixels;

and horizontal and vertical scaling with a random rate in the range [0.9 1.1].

MAT-Script 1: Object Detection Data

Extract and Load the Vehicle Data

 filename = 'vehicleDatasetImages.zip';

 dataFolder = fullfile(tempdir,'vehicleImages');

 data = load('vehicleDatasetGroundTruth.mat');

 vehicleDataset = data.vehicleDataset;

Load the KL Traffic Data

 dataImage = load('imageFilename.mat');

 currentDir = 'C:\Users\User\Documents\MATLAB\YOLOv3\trafficImages';

 imageFilename = fullfile(currentDir, dataImage.imageFilename);

Load the gTruth Labels

 dataLabel = load('trafficData.mat');

 labelData = dataLabel.gTruth.LabelData;

 vehicleDataset = [imageFilename labelData];

 Source: https://www.videvo.net/video/kuala-lumpur-streets-malaysia/4610/

The sample traffic scene data for Kuala Lumpur was downloaded from the

opensource website as mentioned in the source in MAT-Script 1. The video is read

frame by frame and the corresponding images are stored in a separate mat file. The

images are then later used for the training process and used to detect the vehicles.

Once the labelling is done, the mat file is stored and later loaded into the workspace

for further training. As for the object detection, both the vehicle dataset and the

sample traffic data needed to be stored in separate datastores. Two specific

datastores are created for the images and bounding boxes. Then the two datastores

are combined together to form the training and test data. Later, the input data is

validated to check for invalid labels and bounding boxes. After validation, both the

training and test data are pre-processed, and the image augmentation is done to

expand the dataset. Finally, the anchor boxes are estimated to continue with the

training process and the detection of vehicles.

3.1.1 Data Preprocessing: Data preprocessing plays an important role in machine

learning and deep learning algorithms, and proper preprocessing of data is essential

for achieving better performance. Kotsiantis et al. defined data preprocessing as

https://www.videvo.net/video/kuala-lumpur-streets-malaysia/4610/

Open International Journal of Informatics (OIJI) Vol. 10 No. 2 (2022)

84

including data cleaning, normalization, transformation, feature extraction, and

selection [23][24]. Preprocessing data is intended to transform the raw data into a

format that is easier and more effective to use for future processing steps. When it

comes to the CIFAR-10 dataset, it is processed, and the data is split properly as

training and test datasets. So, the dataset is downloaded from the corresponding

source, then the training set is further split into training and validation sets in a 70:30

ratio and used for training the networks with MATLAB. Vehicle data is a small,

processed and labelled MATLAB dataset derived from the Caltech Cars 1999 and

2001 datasets. The images of traffic data need extensive labelling to be done either

manually or through automatic object detector algorithms through the video labeler

app in MATLAB. In a video or image sequence, the video labeler app makes it

simple to add rectangular region of interest (ROI) labels, polyline ROI labels, pixel

ROI labels, and scene labels.

Figure 4. Labelling of KL Traffic Scene

An ROI label represents a rectangular, polyline, pixel, or polygon region of

interest. A scene label, such as "sunny," describes the nature of the scene. Image

classifiers, object detectors, and semantic and instance segmentation networks can

all benefit from labelled data when they are validated or trained. The moving

vehicles are labelled one by one in each of the images, as shown in Figure 4. The

datasets are used to implement the methodology that is described in the following

section, following the selection of the dataset and data preprocessing

 3.2 Optimisation of Darknet-53

In our previous study [30], a transfer learning based performance comparison

between the selected five pre-trained networks was facilitated to select a network

for CNN optimisation. Based on the findings, Darknet-53 was chosen to continue

with the optimisation process. The process was entirely done in MATLAB using

deep network designer (DND), which enables us to view the entire CNN

architecture layer by layer as shown in Figure 5. This helped us largely focus on the

hyperparameters of the entire network, which paved the way for the modification

of parameters.

 The image on the left (a) Layers of Darknet-53, shows the network

architecture of Darknet-53 with a deep network designer.

Open International Journal of Informatics (OIJI) Vol. 10 No. 2 (2022)

85

 Transfer learning involves the replacement of final convolutional layers and

the freezing of initial layers to keep the weights intact.

 The image on the right (b) Replacing the Final Layers, shows the

replacement of the final convolutional layer to match the classes

(NumFilters=10) of CIFAR-10 and the classification layer.

(a) Layers of Darknet-53 (b) Replacing the Final Layers

Figure 5. Modifying the Parameters of Darknet-53

In terms of the optimisation process, normalisation and activation layers are

considered as highlighted under (a) Layers of Darknet-53 as shown in Figure 5 apart

from the replacement of the final convolutional layer and the classification layer.

By default, Darknet-53 includes batch normalisation as a normalisation layer and as

an activation function. Using switchable normalisation techniques, the default

initial batch normalisation layers are updated by instance normalisation (IN), and

the final layers are updated by layer normalisation (LN). The activation function

LeakyReLU is updated by clippedReLU for the entire layers of Darknet-53. The

complete optimisation process of Darknet-53, such as data preparation, training in

deep network designer (DND), analysing the network, freezing the initial layers,

training and testing in the MATLAB workspace, classification of data, and

classification accuracy obtained using a confusion matrix, is presented in MAT-

Script 2.

MAT-Script 2: Optimisation Process of Darknet-53

1. Preparation of Training Data

▪ url = https://www.cs.toronto.edu/ kriz/cifar.html;

▪ rootFolderTrain = "cifar10Train";

Normalisation

Activation

Open International Journal of Informatics (OIJI) Vol. 10 No. 2 (2022)

86

▪ [imdsTrain,imdsValidation] = splitEachLabel(imds,0.7,'randomize');

2. Training in Deep Network Designer

▪ Design = Default Darknet-53 | Optimised Darknet-53 (tNet-FC - tNet-4).

▪ Data = Load the augmented data into Image Datastore.

▪ Training = Batch-16 | Epoch-10 | LR-0.0001.

3. Load Pre-trained Network

▪ load("trainedDN/tNet-1.mat");

▪ net = tNet-FC | tNet-IN | tNet-1 | tNet-2 | tNet-3 | tNet-4;

▪ Analyse: analyzeNetwork(net);

4. Freeze Initial Layers

▪ layers(1:14) = freezeWeights(layers(1:14));

▪ lgraph = createLgraphUsingConnections(layers,connections);

5. Train the Network

▪ Training options: {‘MiniBatchSize’, 'MaxEpochs', 'InitialLearnRate'}

▪ net = trainNetwork(augimdsTrain, lgraph, options);

6. Data Classification

▪ valPred = classify(net,augimdsValidation);

▪ testPred = classify(net,augimdsTest);

7. Classification Accuracy

▪ val_accuracy = mean(valPred == valLabels);

▪ test_accuracy = mean(testPred == testLabels);

8. Confusion Matrix

▪ cm_mat = confusionmat(testLabels, testPred);

▪ cm_chart = confusionchart(testLabels, testPred);

3.3 Designing a YOLOv3 Detection Network in MATLAB

The YOLOv3 object detector is a multi-scale object detection network that

makes predictions at multiple scales by utilising a feature extraction network and

multiple detection heads. On an input image, the object detection model runs a deep

learning CNN to generate network predictions from multiple feature maps. The

object detector collects and decodes predictions to generate the bounding boxes.

YOLOv3 uses anchor boxes to detect object classes in an image.

Figure 6. YOLOv3 Detection Network Design Sequence

The YOLOv3 object detection network is designed following the steps as

described below. As a feature extraction base network, Darknet-53 is used, the pre-

trained optimised CNN. As a detection network source, each and every layer of the

feature extraction network can be used.

Open International Journal of Informatics (OIJI) Vol. 10 No. 2 (2022)

87

 Start the model with a feature extraction network (CNN), that serves as the

base network for creating the YOLOv3 deep learning network, which can

be a pretrained or untrained CNN.

 Create detection subnetworks (heads) by using convolution, batch

normalisation, and ReLU layers.

 Add the detection subnetworks to any of the layers in the base network that

can be used as a detection network source.

Figure 7. Modified YOLOv3 Model with Optimised CNN

The above Figure 7 depicts the modified detection network included with the

optimised CNN as described in Figure 6. The optimised CNN acts as a feature

extractor, and as for the detection, YOLOv3 does the feature detection part with 2

heads specifically designed for effective object detection. For implementation, the

network input size, number of anchors, base network, the object detector, and its

network detection source are described below in MAT-Script 3.

MAT-Script 3: Define YOLOv3 Object Detector

Anchor Boxes

 netSize = [256 256 3];

 DataEstimation = transform(trainingData, preprocessData(data, netSize));

 [anchors, meanIoU] = estimateAnchorBoxes(DataEstimation, numAnchors);

Detection Head

 area = anchors(:, 1).*anchors(:, 2);

 anchorBoxes = {anchors(1:3,:) anchors(4:6,:)};

Object Detector

 baseNetwork = trainedNetwork (Optimised CNN);

 yolov3Detector = yolov3ObjectDetector(baseNetwork, classNames,

 anchorBoxes, 'DetectionNetworkSource', {'res23', 'res11'});

4. Experiment and Result Analysis

 We conducted a study to compare the performance of the pre-trained networks

and from the experimental results, Darknet-53 was the only network faced with

Open International Journal of Informatics (OIJI) Vol. 10 No. 2 (2022)

88

training error (out of memory). Therefore, Darknet-53 was selected among the five

CNN architectures, and the experiment was further proceeded to continue with the

optimisation of Darknet-53. The optimised Darknet-53 is to be employed in

YOLOv3 to enhance the accuracy of the model for effective object detection. The

entire experiment was carried out with a laptop GPU, and the experimental setup,

including the hardware, software, and its specifications, is described in Table 1.

Table 1. Experimental Setup

Hardware/Software Specifications

Microprocessor AMD Ryzen 7 5800H-Radeon Graphics@3.20 GHz

RAM 16.0 GB

GPU NVIDIA GeForce RTX 3060 Laptop GPU

Dedicated Video RAM 6.0 GB

Framework MATLAB R2021a – 64 bits

Programming Language MATLAB

Operating System Windows 10 Home Single Language

4.1 Transfer Learning based CNN Investigation

In our previous study, the selected pre-trained CNN architectures were

investigated based on transfer learning in order to evaluate the network’s

performance using a confusion matrix. The discriminative filters of state-of-the-art

pre-trained models that have been trained on difficult datasets such as "ImageNet"

can be used to recognise objects that have never been trained on [31]. The

fundamental idea would be to use the initial layers of a previously trained model

and only retrain the last few layers on new images. According to the evaluation

results, the networks performed well on the LR-0.001 compared to LR-0.0001,

except for Darknet-53. In comparison to the other four networks, Darknet-53

showed promising results with LR-0.0001, whilst the other networks' performances

were on the decline. The performance comparison of the five pre-trained networks

obtained from our previous study, encompassing both LRs, is shown in Table 2.

Table 2. Performance of the Pre-Trained Networks [30]

CNN

Models

Precision

(%)

Recall

(%)

F1-Score

(%)

Accuracy

(%)

SqueezeNet 80.53 78.9 79.16 91.56

GoogleNet 89.16 88.82 88.85 95.53

ShuffleNet 86.15 85.08 85.13 94.03

Darknet-53 88.29 86.76 86.70 94.70

Inception-V3 92.63 92.46 92.49 96.98

According to the comparison of the pre-trained networks, Inception-V3 has

achieved the highest accuracy of 96.98%, as well as other metrics such as precision,

recall, and F1-score. The other networks produced somewhat lower results than

Inception-V3, but altogether, all five pre-trained networks attained an accuracy of

90% or higher.

Open International Journal of Informatics (OIJI) Vol. 10 No. 2 (2022)

89

4.2 Darknet-53 Optimisation Outcomes

In order to test for the memory problem, we performed experiments both with

and without freezing the initial layers. The experimental results for both the freezing

and non-freezing layers to compare with the optimised Darknet-53 experimental

results are presented together in Table 3. It clearly shows the training error (out of

memory) and the time taken for the training. Especially with the non-freezing

layers, it has taken too much time for the network to train. High classification

accuracy can be attained through transfer learning, but accuracy must be ensured by

accelerating the training speed as much as is feasible. The CNN's front-end network

structure is used to mine for common features, and the extensive data training

ensures that the network parameters have a strong capability for generalisation [32].

In the process of non-freezing layer training, the gradients of the whole network are

updated in which the back propagation will change its parameters and adjust them

in the direction of extracting the feature that requires more time in training the

network. In the process of freezing layer training, the gradients of the backbone

network are not updated, thus preventing the initial backbone weights from being

destroyed in the early stage of training [33]. Thus, through freezing the initial layers,

high accuracy can be maintained while the training time can be reduced.

Table 3. Default Darknet-53 Results

Hyper

Parameters

Accuracy

(%)

Time

(mins)

Accuracy

(%)

Time

(mins)

Accuracy

(%)

Time

(mins)

LR – 0.001 Epoch – 10 Epoch – 20 Epoch – 30

Mini Batch

Size - 64
89.17 781.00

Out of Memory

(Non-freezing)

Out of Memory

(Non-freezing)

Mini Batch

Size - 32

Out of Memory

(Freezing)
86.16 140.22 89.89 207.13

LR – 0.0001 Epoch – 10 Epoch – 20 Epoch – 30

Mini Batch

Size - 64
90.85 760.37

Out of Memory

(Non-freezing)

Out of Memory

(Non-freezing)

Mini Batch

Size - 32

Out of Memory

(Freezing)
91.20 134.70 90.58 203.30

The experiments began by replacing the network's final convolutional and

classification layers while freezing the network's initial layers. To accomplish the

optimum, we tested all the possible combinations of updating the activation and

normalisation layers. The final convolutional and classification layers were replaced

based on transfer learning to match the CIFAR-10 classes. The augmented data was

extracted and loaded into the image datastore before being added to the data section

prior to the training process in DND. The training process began once the data was

loaded with the appropriate training options. The training options are LR-0.0001,

mini batch size-16, and epoch-10, which were chosen based on the experimental

findings from our previous study. The replacement of final convolutional and

classification layers, as well as their parameters, is described in Table 4.

Open International Journal of Informatics (OIJI) Vol. 10 No. 2 (2022)

90

Table 4. Description of Darknet-53 Optimised Versions

Sl.

No.

Optimised

Darknet-53

Description of the Replaced Layers and the

Corresponding Parameters

1. dNet-C53 Final and conv53 layers replaced (Default).

2. dNet-CFC Conv-53 updated by FC (Fully Connected) layer.

3. dNet-CSN IN+BN+LN – Conv-53.

4. dNet-FIN IN+BN+LN – FC.

5. dNet-CLR LeakyReLU updated by clippedReLU.

6. dNet-CIN IN+BN+LN – FC.

Aside from the final layers, the activation and normalisation layers have also

been changed, such as updating the activation function with clippedReLU, and

updating the initial batch normalisation layers with instance normalisation and the

final layers with layer normalisation in the order of (IN+BN+LN). To distinguish it

from the others, each optimised Darknet-53 relevant to the replacement layer and

other parameters was given a unique name.

Table 5. Optimised Darknet-53 Results

Sl.

No.

Representation

of CNN

Optimised

Darknet-53

Validation

Accuracy (%)

Elapsed

Time (min)

1. Darknet-1 dNet-C53 97.88 137.70

2. Darknet-2 dNet-CFC 97.48 136.29

3. Darknet-3 dNet-CSN 95.08 187.45

4. Darknet-4 dNet-FIN 94.40 184.30

5. Darknet-5 dNet-CLR 96.42 125.28

6. Darknet-6 dNet-CIN 95.02 173.28

The best performing network results are presented in Table 5. With the

optimisation of Darknet-53, the accuracy has increased, and the training time has

been reduced considerably.

4.3 YOLOv3 Experimental Outcomes

YOLO is the first single-staged object detection model and one of the fastest

object detection algorithms available. A CNN serves as the backbone for feature

extraction, which is followed by a feature detector for object detection. Switchable

normalisation techniques are used to optimise the pre-trained CNN Darknet-53. The

default CNN backbone was updated in sequence by a set of optimised Darknet-53

CNNs and, utilising two detection heads, the experiment was conducted to improve

the accuracy of the YOLOv3 model for effective object detection. The parameters

designated for the experiment are described below in Table 6. Following the

experimental phase, the YOLOv3 models must be evaluated using average precision

(AP), and the results can be presented using the precision recall curve (PRC). The

methods for testing the model are shown in MAT-Script 4 with an overlap value of

0.5 to ensure anchor boxes overlap well with the bounding boxes in the training

data. For the prediction to be declared positive, there must be a marginal overlap

between the ground truth and the prediction boxes.

Open International Journal of Informatics (OIJI) Vol. 10 No. 2 (2022)

91

Table 6. Parameters for YOLOv3 Object Detection

Parameters Description

Dataset – Detection vehicleDataset and sample KL traffic scene data.

Dataset – Classification CIFAR-10 (4 Classes).

Anchor Boxes numAnchors = 6;

Pre-Trained CNN baseNetwork = Darknet53 | Optimised Darknet-53;

Image Dimension networkInputSize = [256 256 3];

Detection Source DetectionNetworkSource = {'res23', 'res11'};

Epochs numEpochs = 50;

Mini Batch Size miniBatchSize = 8;

Learning Rate learningRate = 0.001;

Average Precision ap = evaluateDetectionPrecision(results, testData);

Average Miss Rate am = evaluateDetectionMissRate(results, testData);

Confidence Score [bboxes, scores, labels] = detect(yolov3Detector, I);

MAT-Script 4: YOLOv3 Model Evaluation

Evaluate Detection

 results = detect(yolov3Detector,testData,'MiniBatchSize',8);

 overlap = 0.5;

 [ap, recall, precision] = evaluateDetectionPrecision(results, testData, overlap);

 [am, fppi, missRate] = evaluateDetectionMissRate(results, testData, overlap);

Precision Recall Curve

 subplot(1,2,1);

 plot(recall, precision)

 xlabel('Recall')

 ylabel('Precision')

 title(sprintf('Average Precision = %.2f', ap))

 subplot(1,2,2);

 loglog(fppi, missRate);

 xlabel('False Positives Per Image');

 ylabel('Log Miss Rate');

 title(sprintf('Average Miss Rate = %.2f', am))

Starting with the custom backbone, the experimental results for both the vehicle

dataset and the sample KL traffic scene data are discussed. The default pre-trained

networks trained on ImageNet, SqueezeNet, GoogleNet, ShuffleNet, Darknet-53,

and Inception-V3, served as the backbone for YOLOv3, and the results are provided

in Table 7.

Table 7. YOLOv3 Custom CNN Backbone Results

Sl. No. Model Backbone Scores AP50 AP75

1. YOLOv3 SqueezeNet 0.88 0.82 0.57

2. YOLOv3 GoogleNet 0.98 0.79 0.35

3. YOLOv3 ShuffleNet 0.96 0.83 0.35

4. YOLOv3 Inception-V3 0.98 0.82 0.49

5. YOLOv3 Darknet-53 0.97 0.85 0.55

Open International Journal of Informatics (OIJI) Vol. 10 No. 2 (2022)

92

Precision values for mAP-50 and mAP-75 are calculated using the COCO IOU

metric. YOLOv3 performs well and provides good results in the old detection metric

of 0.5 IOU, as mentioned in the original paper. As a result, mAP-50 is selected for

the final model comparison for both the vehicle dataset and the sample KL traffic

data. The results for a series of optimised pre-trained Darknet-53 used as the

backbone for YOLOv3 with a vehicle dataset including the prediction confidence

scores and average precision for mAP-50 and mAP-75 are presented in Table 8.

Table 8. YOLOv3 - Vehicle Dataset Results

Sl. No Model Backbone Scores AP50 AP75

1. YOLOv3 dNet-C53 0.69 0.78 0.40

2. YOLOv3 dNet-CFC 0.99 0.86 0.62

3. YOLOv3 dNet-CSN 0.98 0.85 0.62

4. YOLOv3 dNet-FIN 0.98 0.84 0.48

5. YOLOv3 dNet-CLR 0.98 0.84 0.56

6. YOLOv3 dNet-CIN 0.97 0.84 0.58

Among the models, YOLOv3 with optimised dNet-CFC as a backbone and a

fully connected layer in place of the final convolutional layer provided the best

results when compared to the model with the default CNN dNet-C53. In terms of

precision, the same model with optimised dNet-CFC scored the highest among the

other models, with a mAP-50 of 86%. The top-performing YOLOv3 model is

emphasised and compared to related contemporary object detection models such as

Faster R-CNN, a two-staged model, and SSD, a single-staged model, as well as

YOLOv3 that uses the default Darknet-53 as a backbone. The comparison results

are provided in Table 9.

Table 9. Comparison of YOLOv3 Models using Vehicle Dataset

Sl. No. Model Backbone AP50

1. Faster R-CNN ResNet-50 0.82

2. SSD ResNet-50 0.79

3. YOLOv3 Darknet-53 0.83

4. YOLOv3 dNet-CSN 0.85

5. YOLOv3 dNet-CFC 0.86

For the sample KL traffic scene data, YOLOv3 results with optimised pre-

trained networks as a backbone are provided in Table 10, along with the frame rate

per second (FPS), AP-50, and AP-75.

Table 10. YOLOv3 - KL Traffic Scene Results

Sl. No Model Backbone FPS AP50 AP75

1. YOLOv3 dNet-C53 2.91 0.97 0.18

2. YOLOv3 dNet-CFC 2.92 0.96 0.26

3. YOLOv3 dNet-CSN 2.91 0.98 0.20

4. YOLOv3 dNet-FIN 2.88 0.96 0.18

5. YOLOv3 dNet-CLR 2.70 0.97 0.16

6. YOLOv3 dNet-CIN 3.21 0.97 0.26

Open International Journal of Informatics (OIJI) Vol. 10 No. 2 (2022)

93

(a) Faster R-CNN with ResNet50

(b) SSD with ResNet50

(c) YOLOv3 with dNet-CIN

(ClippedReLU + Switchable Normalisation)

Figure 8. Comparison of Confidence Scores for Vehicle Detection

The model that maintained a balance between FPS and mAP-50 was chosen

since practically all of the YOLOv3 models received nearly equal mAP-50. Finally,

the model with dNet-CIN as a backbone that received the highest confidence scores,

and FPS was selected as shown in Figure 8.

Open International Journal of Informatics (OIJI) Vol. 10 No. 2 (2022)

94

In terms of FPS and mAP-50, the YOLOv3 models with the two best performing

CNNs as backbones are compared, Faster R-CNN, and SSD. The results are shown

in Table 11, whereas the SSD model shows a massive variation between FPS and

mAP-50. Despite the model's high speed, its average precision is far below that of

other models. So, when YOLOv3 is compared to other models, it performs well

using an optimised dNet-CIN as the backbone, with an FPS of 3.21 and a mAP-50

of 97%.

Table 11. Comparison of YOLOv3 Models using KL Traffic Data

Sl. No. Model Backbone FPS AP50

1. Faster R-CNN ResNet-50 2.84 0.94

2. SSD ResNet-50 36.07 0.16

3. YOLOv3 Darknet-53 2.75 0.94

4. YOLOv3 dNet-CFC 2.92 0.96

5. YOLOv3 dNet-CIN 3.21 0.97

The current study proves that transfer learning can be useful for various

computer vision problems, especially ones with small datasets. The primary goal of

this study was to optimise Darknet-53 based on our previous study findings to

improve the YOLOv3 model. We conducted the experiment in MATLAB R2021a,

where the complete CNN architecture can be seen, which helped us in the selection

of freezing the initial layers. Darknet-53 optimisation using MATLAB created a

different perspective in image classification to enhance the speed and accuracy of a

CNN architecture. With the availability of proper datasets, CNN models have the

capability to take medical imaging technology further, providing a higher level of

automation in medical imaging, including image processing and analysis. The

improved YOLOv3 object detection model provided a better prospect for detecting

vehicles with different viewpoints even with the small amount of training data. With

a huge amount of data and proper training, the YOLOv3 model can be implemented

with webcams for real-time traffic monitoring and other relevant object detection.

 5. Conclusion and Future Work

 We conducted a study to investigate the performance of five pre-trained

networks: SqueezeNet, GoogleNet, ShuffleNet, Darknet-53, and Inception-V3,

employing various epochs, learning rates, and mini-batch sizes based on transfer

learning. The initial convolutional layers of selected pre-trained CNNs were frozen

to keep the weights intact, and the final layers of the pre-trained CNN models were

replaced either with a fully connected layer or a convolutional layer, and a new

classifier replaced the classification layer. A confusion matrix was used to evaluate

each of the models after they had been trained, and in terms of LR, Darknet-53

delivered impressive results with LR-0.0001, achieving a maximum accuracy of

94.70%. The fact that Darknet-53 was the only CNN that produced an error (out of

memory) over batch-64 is most likely due to GPU memory shortages. Darknet-53

was optimised using switchable normalisation techniques to address the memory

issue. The optimised Darknet-53 increased the validation accuracy, reducing the

training time considerably, and the GPU memory issue was rectified as well. The

Darknet-53 optimisation yielded a combination of new results, which were then

Open International Journal of Informatics (OIJI) Vol. 10 No. 2 (2022)

95

used as a backbone for improving the YOLOv3 object detection model. The

YOLOv3 model with dNet-CFC as a backbone provided the highest mAP of 86%

for the vehicle dataset. YOLOv3 with dNet-CIN as the backbone delivered the best

results for the KL traffic data, with an FPS of 3.21 and a mAP of 97%.

For the Darknet-53 optimisation process, only a few activation functions and

switchable normalisation by updating the initial layers of batch normalisation layers

with instance and final layers with layer normalisation were tested. In the near

future, other activation functions will be prioritised, and group normalisation

techniques will be considered for experimental work. In order to further optimise

Darknet-53, fine-tuning the weights and other parameters will be prioritised. A

diverse dataset will be focused on and prioritised in the future to begin the

evaluation and testing of the YOLOv3 object detection model. Two detection heads

were chosen for effective object detection in the improved YOLOv3 model. It can

also be explored with a single or multiple detection heads depending on the size of

the object and the dataset.

References

[1] K. G. Shreyas Dixit, M. G. Chadaga, S. S. Savalgimath, G. Ragavendra Rakshith, and M. R. Naveen Kumar,

“Evaluation and evolution of object detection techniques YOLO and R-CNN,” Int. J. Recent Technol. Eng., vol. 8,

no. 2 Special issue 3, pp. 824–829, 2019, doi: 10.35940/ijrte.B1154.0782S319.

[2] Z. Zou, Z. Shi, Y. Guo, and J. Ye, “Object Detection in 20 years.” 2019.
[3] T. Jing, X. Luo, T. Yang, and K. Kita, “An Object Detection System Based on YOLO in Traffic Scene,” 2018 IEEE

4th Int. Conf. Comput. Commun. ICCC 2018, pp. 1532–1536, 2018, doi: 10.1109/CompComm.2018.8780944.

[4] E. C. Too, L. Yujian, S. Njuki, and L. Yingchun, “A comparative study of fine-tuning deep learning models for

plant disease identification,” Comput. Electron. Agric., vol. 161, no. October 2017, pp. 272–279, 2019, doi:

10.1016/j.compag.2018.03.032.
[5] X. Feng, Y. Jiang, X. Yang, M. Du, and X. Li, “Computer vision algorithms and hardware implementations: A

survey,” Integration, vol. 69, no. June, pp. 309–320, 2019, doi: 10.1016/j.vlsi.2019.07.005.

[6] A. M. Algorry, A. G. García, and A. G. Wofmann, “Real-Time Object Detection and Classification of Small and

Similar Figures in Image Processing,” Proc. - 2017 Int. Conf. Comput. Sci. Comput. Intell. CSCI 2017, pp. 516–
519, 2018, doi: 10.1109/CSCI.2017.87.

[7] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look once: Unified, real-time object detection,”

Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit., vol. 2016-Decem, pp. 779–788, 2016, doi:

10.1109/CVPR.2016.91.

[8] R. Girshick, “Fast R-CNN,” Proc. IEEE Int. Conf. Comput. Vis., vol. 2015 Inter, pp. 1440–1448, 2015, doi:
10.1109/ICCV.2015.169.

[9] F. Yang, W. Choi, and Y. Lin, “Exploit All the Layers: Fast and Accurate CNN Object Detector with Scale

Dependent Pooling and Cascaded Rejection Classifiers,” Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern

Recognit., vol. 2016-Decem, pp. 2129–2137, 2016, doi: 10.1109/CVPR.2016.234.

[10] G. Chandan, A. Jain, H. Jain, and Mohana, “Real Time Object Detection and Tracking Using Deep Learning and
OpenCV,” Proc. Int. Conf. Inven. Res. Comput. Appl. ICIRCA 2018, no. Icirca, pp. 1305–1308, 2018, doi:

10.1109/ICIRCA.2018.8597266.

[11] Z. Yi, S. Yongliang, and Z. Jun, “An improved tiny-yolov3 pedestrian detection algorithm,” Optik (Stuttg)., vol.

183, no. February, pp. 17–23, 2019, doi: 10.1016/j.ijleo.2019.02.038.

[12] Z. Q. Zhao, P. Zheng, S. T. Xu, and X. Wu, “Object Detection with Deep Learning: A Review,” IEEE Trans. Neural
Networks Learn. Syst., vol. 30, no. 11, pp. 3212–3232, 2019, doi: 10.1109/TNNLS.2018.2876865.

[13] J. Redmon and A. Farhadi, “YOLO9000: Better, faster, stronger,” Proc. - 30th IEEE Conf. Comput. Vis. Pattern

Recognition, CVPR 2017, vol. 2017-Janua, pp. 6517–6525, 2017, doi: 10.1109/CVPR.2017.690.

[14] P. Ren, W. Fang, and S. Djahel, “A novel YOLO-Based real-time people counting approach,” in 2017 international

smart cities conference (ISC2), 2017, pp. 1–2.
[15] S. R. Alvar and I. V. Bajic, “MV-YOLO: Motion vector-aided tracking by semantic object detection,” 2018 IEEE

20th Int. Work. Multimed. Signal Process. MMSP 2018, 2018, doi: 10.1109/MMSP.2018.8547125.

[16] Z. Xu, H. Shi, N. Li, C. Xiang, and H. Zhou, “Vehicle detection under UAV based on optimal dense YOLO

method,” in 2018 5th International Conference on Systems and Informatics (ICSAI), 2018, pp. 407–411.

[17] V. Thakkar, S. Tewary, and C. Chakraborty, “Batch Normalization in Convolutional Neural Networks - A
comparative study with CIFAR-10 data,” Proc. 5th Int. Conf. Emerg. Appl. Inf. Technol. EAIT 2018, 2018, doi:

10.1109/EAIT.2018.8470438.

[18] P. M. Radiuk, “Impact of Training Set Batch Size on the Performance of Convolutional Neural Networks for

Diverse Datasets,” Inf. Technol. Manag. Sci., vol. 20, no. 1, pp. 20–24, 2018, doi: 10.1515/itms-2017-0003.

[19] A. Kuznetsova et al., “The Open Images Dataset V4: Unified Image Classification, Object Detection, and Visual
Relationship Detection at Scale,” Int. J. Comput. Vis., vol. 128, no. 7, pp. 1956–1981, 2020, doi: 10.1007/s11263-

020-01316-z.

Open International Journal of Informatics (OIJI) Vol. 10 No. 2 (2022)

96

[20] B. Recht, R. Roelofs, L. Schmidt, and V. Shankar, “Do CIFAR-10 Classifiers Generalize to CIFAR-10?,” pp. 1–

25, 2018, [Online]. Available: http://arxiv.org/abs/1806.00451.

[21] Q. H. Nguyen et al., “Influence of data splitting on performance of machine learning models in prediction of shear

strength of soil,” Math. Probl. Eng., vol. 2021, 2021, doi: 10.1155/2021/4832864.

[22] A. Krizhevsky, G. Hinton, and others, “Learning multiple layers of features from tiny images,” 2009.
[23] S. B. Kotsiantis, D. Kanellopoulos, and P. E. Pintelas, “Data preprocessing for supervised leaning,” Int. J. Comput.

Sci., vol. 1, no. 2, pp. 111–117, 2006.

[24] X. Zheng, M. Wang, and J. Ordieres-Meré, “Comparison of data preprocessing approaches for applying deep

learning to human activity recognition in the context of industry 4.0,” Sensors (Switzerland), vol. 18, no. 7, 2018,

doi: 10.3390/s18072146.
[25] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature hierarchies for accurate object detection and

semantic segmentation,” Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit., pp. 580–587, 2014, doi:

10.1109/CVPR.2014.81.

[26] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network training by reducing internal covariate

shift,” 32nd Int. Conf. Mach. Learn. ICML 2015, vol. 1, pp. 448–456, 2015.
[27] Y. Wu and Kaiming He, “Group Normalization – Facebook Research,” Eccv, no. Figure 1, 2018, [Online].

Available: https://research.fb.com/publications/group-normalization/.

[28] P. Luo, J. Ren, Z. Peng, R. Zhang, and J. Li, “Differentiable learning-to-normalize via switchable normalization,”

7th Int. Conf. Learn. Represent. ICLR 2019, pp. 1–19, 2019.

[29] P. Luo, R. Zhang, J. Ren, Z. Peng, and J. Li, “Switchable Normalization for Learning-to-Normalize Deep
Representation,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 43, no. 2, pp. 712–728, 2021, doi:

10.1109/TPAMI.2019.2932062.

[30] J. S. Kumar, S. Anuar, and N. H. Hassan, “Transfer Learning based Performance Comparison of the Pre-Trained

Deep Neural Networks,” vol. 13, no. 1, 2022.

[31] S. Kumaresan, K. S. J. Aultrin, S. S. Kumar, and M. D. Anand, “Transfer Learning with CNN for Classification of
Weld Defect,” IEEE Access, vol. 9, pp. 95097–95108, 2021, doi: 10.1109/ACCESS.2021.3093487.

[32] Y. Shi, Y. Li, Y. Zhang, Z. Zhuang, and T. Jiang, “An Easy Access Method for Event Recognition of Φ-OTDR

Sensing System Based on Transfer Learning,” J. Light. Technol., vol. 39, no. 13, pp. 4548–4555, 2021, doi:

10.1109/JLT.2021.3070583.

[33] M. A. F. Fusion, M. Zhang, S. Xu, W. Song, Q. He, and Q. Wei, “Lightweight Underwater Object Detection Based
on YOLO v4,” pp. 1–22, 2021.

	Abstract

