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Abstract 

Object detection is a computer vision technique that gives the ability to individually locate, 

recognise, and interpret multiple objects in an image with a better understanding. Modern image 

understanding tasks like image classification have been improved by state-of-the-art deep learning 

methods, particularly by convolutional neural networks (CNN). Region-based object detection 

algorithms such as Fast-RCNN achieve classification by CNN but over a longer period of time. You 

only look once (YOLO) prompts the object location and classification, treating object detection as a 

regression problem in an end-to-end network in a single step, whereas its accuracy decreases when 

the image has similar objects in a confined area, particularly when independent of the surrounding 

context. The aim of the current study is to improve YOLOv3 by optimising Darknet-53 to address the 

memory issue, using switchable normalisation techniques. We investigated the performance of five 

pre-trained networks, SqueezeNet, GoogleNet, ShuffleNet, Darknet-53, and Inception-V3, using a 

confusion matrix employing various epochs, learning rates, and mini-batches based on transfer 

learning. Darknet-53 took five times longer to complete the training and also ran into errors, most 

likely due to GPU memory shortages, whereas GoogleNet virtually obtained the same results in a 

fraction of the time. Using switchable normalisation techniques with the 10 class CIFAR-10 dataset, 

and utilising deep network designer (DND) of MATLAB R2021a, optimised versions of Darknet-53 

increased the validation accuracy, considerably reducing the training time, and rectified the memory 

issue, which were then used as a backbone for YOLOv3 for effective object detection. The enhanced 

YOLOv3 was then assessed using a vehicle dataset and a sample Kuala Lumpur traffic scene using 

average precision. YOLOv3 with optimised CNN dNet-CIN as the backbone produced the best 

experimental results, with an FPS of 3.21 and a mAP-50 of 97%. 
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1. Introduction 

Object detection is the ability to locate an instance of an object in any image, and 

object recognition is the ability to determine whether a given object belongs to a 

specific class. Object extraction from natural images, along with image processing, 

is often considered an elementary and critical problem in the field of computer 

vision. Meanwhile, research in this area has revealed that it is still a looming and 

overwhelming challenge [1]. This is due to the fact that images of natural 

environments depict real-world adaptations, which are distinguished by a wide 

range of shapes, colours, and textures. In particular, with regard to some challenging 

issues in other computer vision tasks, such as objects under different viewpoints, 
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illuminations, and intraclass variations, the challenges in object detection include, 

but are not limited to, the following aspects: object rotation and scale changes, 

accurate object localisation, dense and occluded object detection, rise in detection 

speed, and so on [2]. Deep learning techniques are currently used to drive high-

performance vision systems. In terms of speed and accuracy, deep learning-based 

object detection outperforms classical machine learning techniques [3]. Deep 

networks may face obstacles and hurdles throughout the training process, such as 

exploding/vanishing gradients and degradation. When the depth of a network 

exceeds the maximum, it suffers from the degradation problem, which results in a 

decline in accuracy [4]. Although deeper networks are more accurate due to 

vanishing/exploding gradient information during network training, merely 

increasing the number of layers alone will not enhance accuracy indefinitely [5]. 

The internal covariate shift, which is the change in the distribution of the input data 

to a layer during training, is another matter of concern. CNN's unique qualities, such 

as incremental feature extraction in subsequent layers, make it possible to use parts 

of a pre-trained model for a completely new task without retraining the entire 

network. Transfer learning is a technique that may be used to retrain a CNN model 

that has been trained on a large dataset. 

1.1 Study Background 

The field of detecting and classifying objects in real-time images has made 

substantial progress, but it still has some shortcomings, especially with objects that 

occupy smaller areas and are similar in shape [6]. R-CNN and other most recent 

approaches generate potential bounding boxes in an image using region proposal 

methods before running a classifier on these proposed boxes [7]. Some region-based 

object detection algorithms, such as Fast R-CNN, achieve classification over CNN 

by extracting proposals, but it takes a long time [8][3]. The architectures such as 

Faster R-CNN are precise, but the model itself is very complex, whereas a pre-

trained network is ideal for object proposals to be classified. Nevertheless, both 

training and testing are inefficient because the network performs a forward pass on 

each and every object proposal independently [9]. Convolutional filters are 

deliberately applied to thousands of redundant and expensive object proposals. 

Single Shot Detector (SSD) is a popular object detection algorithm that was 

developed by Google Inc. It is based on the VGG-16 architecture which gives only 

10-20% less average precision [10]. Joseph Redmon et al. proposed a state-of-the-

art object detector named YOLO (You Only Look Once), which outperforms the 

other object detectors like Fast R-CNN. In YOLO, it is proposed to incorporate 

object position and classification by a single CNN [3]. It is currently one of the 

fastest algorithms known for its detection speed. However, it shows a substantial 

inaccuracy in the recognition of tiny targets, making it difficult to detect targets 

accurately in complicated backgrounds [11]. YOLO trains on full images and 

optimises its detection performance directly. However, due to the strong spatial 

constraints imposed on bounding box predictions, it faces difficulty in dealing with 

small objects in groups [7] [12]. A slight drop in accuracy is increased with the use 

of anchor boxes. While the mean average precision (mAP) declines, the 

improvement in recall means more space for the model to boost accuracy [13]. 
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2. Related Studies  

The previous studies have been primarily focused on the detection of various 

objects, vehicles, human detection, and face detection using YOLO. In some of the 

previous studies, not only the detection of objects but also the counting of objects 

like vehicles and people has been carried out by using traffic video records [14]. 

Alvar et al. modified the algorithm into a motion vector: MV-YOLO to track the 

motion information of vehicles from the compressed video stream [15]. Xu et al. 

(2018) proposed a new method called Dense YOLO to improve the original 

YOLOv2 structure and tested the performance of that model with other one-stage 

detection models in an aerial dataset with an accuracy achieved of 76.2% with a 

detection speed of 26 frames per second [16]. Yi Tan et al. proposed a unique 

technique to detect vehicles based on change detection followed by the generation 

of vehicle proposals, whereas the CNN classifier determined the proposal as non-

vehicle and vehicle. From the previous studies, it is clear that deep learning based 

CNNs play a part in the detection and classification of objects. Most of the research 

work focused on the detection of vehicles, whereas some authors even classified the 

vehicles based on colour and type [3]. The YOLOv3 version has been used for the 

majority of the application studies beside the optimisation of YOLO. Some of the 

major applications were moving object detection via motion prediction, multiple 

object tracking, obstacle detection, pedestrian detection, object detection in foggy 

conditions, real-time abandoned baggage detection and people counting approach.  

Transfer Learning has been utilised in a range of fields by fine-tuning pre-

trained CNN models learned on ImageNet. The earlier studies on pre-trained CNNs 

based on transfer learning that uses CIFAR-10 and 100 datasets performed image 

classification on the embedded systems, used to train very deep residual attention 

networks, and used to evaluate the performance of deep learning models using 

MNIST and CIFAR-10 datasets. Similar to the scope of the present study, some of 

the previous studies were using CIFAR-10 with batch normalisation and ELU 

activation to test the performance of residual networks [17], and to find the impact 

of training set batch size [18]. YOLO, a state-of-the-art deep learning algorithm, 

seems to be the fastest when it comes to object detection but still lags in accuracy 

with other methods like Faster R-CNN. The aim of the current study is to improve 

YOLOv3 by optimising Darknet-53 to address the memory issue, using switchable 

normalisation techniques. 

3. Methodology 

CNN is a special form of neural network that is more suitable for computer vision 

tasks because of its capability. Currently, CNN-based object detection techniques 

are in use, which has three layers: convolution, pooling, and fully connected. 

Girshick et al.'s approach, based on linear classifiers with CNN-derived features, 

was the first to conclusively defeat HOG with DPM, with a mean average precision 

gain of roughly 20 percentage points across the 20 PASCAL VOC 2007 dataset 

classes [25]. Deep neural network training is difficult because the dispersion of each 

layer's inputs varies during training as the parameters of the preceding layers 

change. The requirement of lower learning rates and exact parameter initialisation 

slows down training, and thus makes training models with saturating nonlinearities 
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notoriously difficult. This is known as internal covariate shift, which is probably 

handled by normalising layer inputs [26]. Many normalisation algorithms, such as 

batch normalisation (BN), group normalisation (GN), instance normalisation (IN), 

and layer normalisation (LN), have been developed in recent years as crucial 

components of deep learning, as shown in Figure 1. Batch normalisation allows us 

to use much higher learning rates while being less concerned with initialisation. It 

also serves as a regulariser, minimizing the need for dropouts in some cases. 

Normalisation techniques are essential for improving neural network training and 

generalisation. Many studies have shown that this enhances optimisation and allows 

deep networks to merge [27]. Batch normalisation is a key technique in the 

advancement of deep learning, allowing diverse networks to train. Many methods 

have demonstrated that this facilitates optimisation and allows very deep networks 

to converge. The stochastic uncertainty of the batch statistics functions as a 

regulariser, which can help with generalisation. 

 

Figure 1. Normalisation Methods with a Feature Map Tensor [27] 

Despite its enormous success, BN has limitations, which are exacerbated by its 

unique behaviour of normalising along the batch dimension. BN must, in particular, 

work with a suitably large batch size. Despite their considerable success, existing 

techniques frequently used the same normaliser in all normalisation layers of a 

network, resulting in inferior performance. Furthermore, multiple normalisers are 

utilised to tackle different tasks, making model creation more difficult. To address 

the aforementioned difficulties, Luo et al. introduced switchable normalisation 

(SN), which combines three forms of statistics calculated channel-wise, layer-wise, 

and minibatch-wise using IN, LN, and BN, as presented in Figure 2. 

 

Figure 2. Switchable Normalisation Method [28] 

Switchable normalisation is a normalisation technique capable of learning 

alternative normalisation operations for distinct normalisation layers in end-to-end 

manner in a deep neural network. IN primarily occurs in lower layers to eliminate 
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variability in low-level features, LN appears in deeper levels to improve learning 

ability, and BN appears in the center [29]. According to the author, adopting a single 

normalisation method uniformly is not the best way to normalise the layers. Image 

categorisation and object detection, for example, favour a mix of three normalisers. 

3.1 Data Preparation 

In order to encourage computers to view images as object compositions, data 

plays a particularly critical role, an accomplishment that humans can do seamlessly 

while so far it has been obscuring for machines. In particular, humans would like 

machines to automatically identify what objects are present in an image, where they 

are precisely located, and which of them interact and how they interact [19]. All 

throughout the history of object recognition work, datasets have played an important 

role, not only as a common ground for assessing and comparing the performance of 

competing algorithms, but also in driving the field toward increasingly complex and 

difficult challenges. Figure 3 depicts the course of sequence in the data preparation 

that explains the selection and collection of datasets. Fundamentally, the dataset 

selection is divided into 2 major categories: object classification datasets 

responsible for feature extraction and object detection datasets, which are 

responsible for object localization and feature detection. 

 

Figure 3. Selection and Collection of Dataset 

CIFAR-10 is currently one of the most widely used benchmark datasets in 

machine learning and serves as a test ground for many computer vision methods. A 

concrete measure of popularity is the fact that CIFAR-10 was the second most 

common dataset in NIPS 2017 [20]. The benchmark image classification dataset, 

CIFAR-10, was chosen for the object classification. For object detection, a 

MATLAB-based vehicle dataset and a traffic scene from Kuala Lumpur are used. 

There are no rigid rules for separating training and test datasets, although the most 

typical split ratios are 80:20; 70:30; and 60:40, depending on the nature of the issue, 

the size of the dataset, and the architecture utilised. In this definition, a training 

dataset is used to build the model, and a test dataset is used to evaluate the model's 

predictive ability. Researchers have noted that the performance of the model 

performed best when the training-to-test ratio was 70:30 to distinguish between the 
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datasets [21]. The CIFAR-10 dataset has 32 x 32 colour images that are divided into 

ten classes, each with 5000 training images and 1000 test images [22]. It contains 

ten classes with a total of 50,000 training images and 10,000 testing images. In 

addition, image augmentation was performed at random on the training datasets 

using different values to expand the dataset. The vehicle dataset is a MATLAB 

built-in dataset that consists of 295 images that each contain one or two labelled 

instances of a vehicle. The images are 720-by-960-by-3 in size, and this small data 

set is useful for investigating the object detection training procedure, which is then 

used to test the improved YOLOv3 model. The data is extracted and loaded into the 

workspace, and the ground truth labels, and bounding boxes are stored in a mat file, 

which is then extracted and stored as vehicleDataset. During the training phase, the 

images in each batch were randomly subjected to the following operations, as 

specified in the majority of the MATLAB examples: horizontal reflection; 

horizontal and vertical translation with a random value in the range [-30 30] pixels; 

and horizontal and vertical scaling with a random rate in the range [0.9 1.1]. 

MAT-Script 1: Object Detection Data  

# Extract and Load the Vehicle Data 

   filename = 'vehicleDatasetImages.zip'; 

   dataFolder = fullfile(tempdir,'vehicleImages'); 

   data = load('vehicleDatasetGroundTruth.mat'); 

   vehicleDataset = data.vehicleDataset; 

# Load the KL Traffic Data 

   dataImage = load('imageFilename.mat'); 

   currentDir = 'C:\Users\User\Documents\MATLAB\YOLOv3\trafficImages'; 

   imageFilename = fullfile(currentDir, dataImage.imageFilename); 

# Load the gTruth Labels 

   dataLabel = load('trafficData.mat'); 

   labelData = dataLabel.gTruth.LabelData; 

   vehicleDataset = [imageFilename labelData]; 

   Source: https://www.videvo.net/video/kuala-lumpur-streets-malaysia/4610/ 

The sample traffic scene data for Kuala Lumpur was downloaded from the 

opensource website as mentioned in the source in MAT-Script 1. The video is read 

frame by frame and the corresponding images are stored in a separate mat file. The 

images are then later used for the training process and used to detect the vehicles. 

Once the labelling is done, the mat file is stored and later loaded into the workspace 

for further training. As for the object detection, both the vehicle dataset and the 

sample traffic data needed to be stored in separate datastores. Two specific 

datastores are created for the images and bounding boxes. Then the two datastores 

are combined together to form the training and test data. Later, the input data is 

validated to check for invalid labels and bounding boxes. After validation, both the 

training and test data are pre-processed, and the image augmentation is done to 

expand the dataset. Finally, the anchor boxes are estimated to continue with the 

training process and the detection of vehicles. 

3.1.1 Data Preprocessing: Data preprocessing plays an important role in machine 

learning and deep learning algorithms, and proper preprocessing of data is essential 

for achieving better performance. Kotsiantis et al. defined data preprocessing as 

https://www.videvo.net/video/kuala-lumpur-streets-malaysia/4610/
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including data cleaning, normalization, transformation, feature extraction, and 

selection [23][24]. Preprocessing data is intended to transform the raw data into a 

format that is easier and more effective to use for future processing steps. When it 

comes to the CIFAR-10 dataset, it is processed, and the data is split properly as 

training and test datasets. So, the dataset is downloaded from the corresponding 

source, then the training set is further split into training and validation sets in a 70:30 

ratio and used for training the networks with MATLAB. Vehicle data is a small, 

processed and labelled MATLAB dataset derived from the Caltech Cars 1999 and 

2001 datasets. The images of traffic data need extensive labelling to be done either 

manually or through automatic object detector algorithms through the video labeler 

app in MATLAB. In a video or image sequence, the video labeler app makes it 

simple to add rectangular region of interest (ROI) labels, polyline ROI labels, pixel 

ROI labels, and scene labels. 

 

Figure 4. Labelling of KL Traffic Scene  

An ROI label represents a rectangular, polyline, pixel, or polygon region of 

interest. A scene label, such as "sunny," describes the nature of the scene. Image 

classifiers, object detectors, and semantic and instance segmentation networks can 

all benefit from labelled data when they are validated or trained. The moving 

vehicles are labelled one by one in each of the images, as shown in Figure 4. The 

datasets are used to implement the methodology that is described in the following 

section, following the selection of the dataset and data preprocessing 

 3.2 Optimisation of Darknet-53  

In our previous study [30], a transfer learning based performance comparison 

between the selected five pre-trained networks was facilitated to select a network 

for CNN optimisation. Based on the findings, Darknet-53 was chosen to continue 

with the optimisation process. The process was entirely done in MATLAB using 

deep network designer (DND), which enables us to view the entire CNN 

architecture layer by layer as shown in Figure 5. This helped us largely focus on the 

hyperparameters of the entire network, which paved the way for the modification 

of parameters. 

 The image on the left (a) Layers of Darknet-53, shows the network 

architecture of Darknet-53 with a deep network designer. 
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 Transfer learning involves the replacement of final convolutional layers and 

the freezing of initial layers to keep the weights intact. 

 The image on the right (b) Replacing the Final Layers, shows the 

replacement of the final convolutional layer to match the classes 

(NumFilters=10) of CIFAR-10 and the classification layer. 

  
(a) Layers of Darknet-53 (b) Replacing the Final Layers 

Figure 5. Modifying the Parameters of Darknet-53 

In terms of the optimisation process, normalisation and activation layers are 

considered as highlighted under (a) Layers of Darknet-53 as shown in Figure 5 apart 

from the replacement of the final convolutional layer and the classification layer. 

By default, Darknet-53 includes batch normalisation as a normalisation layer and as 

an activation function. Using switchable normalisation techniques, the default 

initial batch normalisation layers are updated by instance normalisation (IN), and 

the final layers are updated by layer normalisation (LN). The activation function 

LeakyReLU is updated by clippedReLU for the entire layers of Darknet-53. The 

complete optimisation process of Darknet-53, such as data preparation, training in 

deep network designer (DND), analysing the network, freezing the initial layers, 

training and testing in the MATLAB workspace, classification of data, and 

classification accuracy obtained using a confusion matrix, is presented in MAT-

Script 2.   

MAT-Script 2: Optimisation Process of Darknet-53 

1. Preparation of Training Data 

▪ url = https://www.cs.toronto.edu/ kriz/cifar.html; 

▪ rootFolderTrain = "cifar10Train"; 

Normalisation 

Activation 
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▪ [imdsTrain,imdsValidation] = splitEachLabel(imds,0.7,'randomize'); 

2. Training in Deep Network Designer 

▪ Design = Default Darknet-53 | Optimised Darknet-53 (tNet-FC - tNet-4). 

▪ Data = Load the augmented data into Image Datastore. 

▪ Training = Batch-16 | Epoch-10 | LR-0.0001. 

3. Load Pre-trained Network 

▪ load("trainedDN/tNet-1.mat"); 

▪ net = tNet-FC | tNet-IN | tNet-1 | tNet-2 | tNet-3 | tNet-4; 

▪ Analyse: analyzeNetwork(net); 

4. Freeze Initial Layers 

▪ layers(1:14) = freezeWeights(layers(1:14)); 

▪ lgraph = createLgraphUsingConnections(layers,connections); 

5. Train the Network 

▪ Training options: {‘MiniBatchSize’, 'MaxEpochs', 'InitialLearnRate'} 

▪ net = trainNetwork(augimdsTrain, lgraph, options); 

6. Data Classification 

▪ valPred = classify(net,augimdsValidation);  

▪ testPred = classify(net,augimdsTest); 

7. Classification Accuracy 

▪ val_accuracy = mean(valPred == valLabels); 

▪ test_accuracy = mean(testPred == testLabels); 

8. Confusion Matrix 

▪ cm_mat = confusionmat(testLabels, testPred); 

▪ cm_chart = confusionchart(testLabels, testPred); 

3.3 Designing a YOLOv3 Detection Network in MATLAB 

The YOLOv3 object detector is a multi-scale object detection network that 

makes predictions at multiple scales by utilising a feature extraction network and 

multiple detection heads. On an input image, the object detection model runs a deep 

learning CNN to generate network predictions from multiple feature maps. The 

object detector collects and decodes predictions to generate the bounding boxes. 

YOLOv3 uses anchor boxes to detect object classes in an image.  

 

Figure 6. YOLOv3 Detection Network Design Sequence 

The YOLOv3 object detection network is designed following the steps as 

described below. As a feature extraction base network, Darknet-53 is used, the pre-

trained optimised CNN. As a detection network source, each and every layer of the 

feature extraction network can be used. 



Open International Journal of Informatics (OIJI)                                                    Vol. 10  No. 2 (2022) 

 
 

87 

 

 Start the model with a feature extraction network (CNN), that serves as the 

base network for creating the YOLOv3 deep learning network, which can 

be a pretrained or untrained CNN. 

 Create detection subnetworks (heads) by using convolution, batch 

normalisation, and ReLU layers. 

 Add the detection subnetworks to any of the layers in the base network that 

can be used as a detection network source. 

 

Figure 7. Modified YOLOv3 Model with Optimised CNN 

The above Figure 7 depicts the modified detection network included with the 

optimised CNN as described in Figure 6. The optimised CNN acts as a feature 

extractor, and as for the detection, YOLOv3 does the feature detection part with 2 

heads specifically designed for effective object detection. For implementation, the 

network input size, number of anchors, base network, the object detector, and its 

network detection source are described below in MAT-Script 3. 

MAT-Script 3: Define YOLOv3 Object Detector 

# Anchor Boxes 

   netSize = [256 256 3]; 

   DataEstimation = transform(trainingData, preprocessData(data, netSize)); 

   [anchors, meanIoU] = estimateAnchorBoxes(DataEstimation, numAnchors); 

# Detection Head 

   area = anchors(:, 1).*anchors(:, 2); 

   anchorBoxes = {anchors(1:3,:) anchors(4:6,:)}; 

# Object Detector 

   baseNetwork = trainedNetwork (Optimised CNN); 

   yolov3Detector = yolov3ObjectDetector(baseNetwork, classNames,    

                                anchorBoxes, 'DetectionNetworkSource', {'res23', 'res11'}); 

4. Experiment and Result Analysis 

      We conducted a study to compare the performance of the pre-trained networks 

and from the experimental results, Darknet-53 was the only network faced with 
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training error (out of memory). Therefore, Darknet-53 was selected among the five 

CNN architectures, and the experiment was further proceeded to continue with the 

optimisation of Darknet-53. The optimised Darknet-53 is to be employed in 

YOLOv3 to enhance the accuracy of the model for effective object detection. The 

entire experiment was carried out with a laptop GPU, and the experimental setup, 

including the hardware, software, and its specifications, is described in Table 1. 

Table 1. Experimental Setup 

Hardware/Software Specifications 

Microprocessor AMD Ryzen 7 5800H-Radeon Graphics@3.20 GHz 

RAM 16.0 GB 

GPU NVIDIA GeForce RTX 3060 Laptop GPU 

Dedicated Video RAM 6.0 GB 

Framework MATLAB R2021a – 64 bits 

Programming Language MATLAB 

Operating System Windows 10 Home Single Language 

 

4.1 Transfer Learning based CNN Investigation 

In our previous study, the selected pre-trained CNN architectures were 

investigated based on transfer learning in order to evaluate the network’s 

performance using a confusion matrix. The discriminative filters of state-of-the-art 

pre-trained models that have been trained on difficult datasets such as "ImageNet" 

can be used to recognise objects that have never been trained on [31]. The 

fundamental idea would be to use the initial layers of a previously trained model 

and only retrain the last few layers on new images. According to  the evaluation 

results, the networks performed well on the LR-0.001 compared to LR-0.0001, 

except for Darknet-53. In comparison to the other four networks, Darknet-53 

showed promising results with LR-0.0001, whilst the other networks' performances 

were on the decline. The performance comparison of the five pre-trained networks 

obtained from our previous study, encompassing both LRs, is shown in Table 2. 

Table 2. Performance of the Pre-Trained Networks [30] 

CNN      

Models 

Precision   

(%) 

Recall      

(%) 

F1-Score   

(%) 

Accuracy   

(%) 

SqueezeNet 80.53 78.9 79.16 91.56 

GoogleNet 89.16 88.82 88.85 95.53 

ShuffleNet 86.15 85.08 85.13 94.03 

Darknet-53 88.29 86.76 86.70 94.70 

Inception-V3  92.63 92.46 92.49 96.98 

According to the comparison of the pre-trained networks, Inception-V3 has 

achieved the highest accuracy of 96.98%, as well as other metrics such as precision, 

recall, and F1-score. The other networks produced somewhat lower results than 

Inception-V3, but altogether, all five pre-trained networks attained an accuracy of 

90% or higher. 
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4.2 Darknet-53 Optimisation Outcomes  

In order to test for the memory problem, we performed experiments both with 

and without freezing the initial layers. The experimental results for both the freezing 

and non-freezing layers to compare with the optimised Darknet-53 experimental 

results are presented together in Table 3. It clearly shows the training error (out of 

memory) and the time taken for the training. Especially with the non-freezing 

layers, it has taken too much time for the network to train. High classification 

accuracy can be attained through transfer learning, but accuracy must be ensured by 

accelerating the training speed as much as is feasible. The CNN's front-end network 

structure is used to mine for common features, and the extensive data training 

ensures that the network parameters have a strong capability for generalisation [32]. 

In the process of non-freezing layer training, the gradients of the whole network are 

updated in which the back propagation will change its parameters and adjust them 

in the direction of extracting the feature that requires more time in training the 

network. In the process of freezing layer training, the gradients of the backbone 

network are not updated, thus preventing the initial backbone weights from being 

destroyed in the early stage of training [33]. Thus, through freezing the initial layers, 

high accuracy can be maintained while the training time can be reduced.  

Table 3. Default Darknet-53 Results 

Hyper 

Parameters 

Accuracy 

(%) 

Time 

(mins) 

Accuracy 

(%) 

Time 

(mins) 

Accuracy 

(%) 

Time 

(mins) 

LR – 0.001 Epoch – 10 Epoch – 20 Epoch – 30 

Mini Batch 

Size - 64 
89.17 781.00 

Out of Memory 

(Non-freezing) 

Out of Memory 

(Non-freezing) 

Mini Batch 

Size - 32 

Out of Memory 

(Freezing) 
86.16 140.22 89.89 207.13 

LR – 0.0001 Epoch – 10 Epoch – 20 Epoch – 30 

Mini Batch 

Size - 64 
90.85 760.37 

Out of Memory 

(Non-freezing) 

Out of Memory 

(Non-freezing) 

Mini Batch 

Size - 32 

Out of Memory 

(Freezing) 
91.20 134.70 90.58 203.30 

 

The experiments began by replacing the network's final convolutional and 

classification layers while freezing the network's initial layers. To accomplish the 

optimum, we tested all the possible combinations of updating the activation and 

normalisation layers. The final convolutional and classification layers were replaced 

based on transfer learning to match the CIFAR-10 classes. The augmented data was 

extracted and loaded into the image datastore before being added to the data section 

prior to the training process in DND. The training process began once the data was 

loaded with the appropriate training options. The training options are LR-0.0001, 

mini batch size-16, and epoch-10, which were chosen based on the experimental 

findings from our previous study. The replacement of final convolutional and 

classification layers, as well as their parameters, is described in Table 4. 
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Table 4. Description of Darknet-53 Optimised Versions 

Sl.  

No. 

Optimised    

Darknet-53 

Description of the Replaced Layers and the 

Corresponding Parameters 

1.  dNet-C53 Final and conv53 layers replaced (Default). 

2.  dNet-CFC Conv-53 updated by FC (Fully Connected) layer. 

3.  dNet-CSN IN+BN+LN – Conv-53.  

4.  dNet-FIN IN+BN+LN – FC. 

5.  dNet-CLR LeakyReLU updated by clippedReLU. 

6.  dNet-CIN IN+BN+LN – FC.  

Aside from the final layers, the activation and normalisation layers have also 

been changed, such as updating the activation function with clippedReLU, and 

updating the initial batch normalisation layers with instance normalisation and the 

final layers with layer normalisation in the order of (IN+BN+LN). To distinguish it 

from the others, each optimised Darknet-53 relevant to the replacement layer and 

other parameters was given a unique name.  

Table 5. Optimised Darknet-53 Results 

Sl.  

No. 

Representation 

of CNN 

Optimised 

Darknet-53 

Validation 

Accuracy (%) 

Elapsed   

Time (min) 

1.  Darknet-1 dNet-C53 97.88 137.70 

2.  Darknet-2 dNet-CFC 97.48 136.29 

3.  Darknet-3 dNet-CSN 95.08 187.45 

4.  Darknet-4 dNet-FIN 94.40 184.30 

5.  Darknet-5  dNet-CLR 96.42 125.28 

6.  Darknet-6  dNet-CIN 95.02 173.28 

The best performing network results are presented in Table 5. With the 

optimisation of Darknet-53, the accuracy has increased, and the training time has 

been reduced considerably.  

4.3 YOLOv3 Experimental Outcomes 

YOLO is the first single-staged object detection model and one of the fastest 

object detection algorithms available. A CNN serves as the backbone for feature 

extraction, which is followed by a feature detector for object detection. Switchable 

normalisation techniques are used to optimise the pre-trained CNN Darknet-53. The 

default CNN backbone was updated in sequence by a set of optimised Darknet-53 

CNNs and, utilising two detection heads, the experiment was conducted to improve 

the accuracy of the YOLOv3 model for effective object detection. The parameters 

designated for the experiment are described below in Table 6. Following the 

experimental phase, the YOLOv3 models must be evaluated using average precision 

(AP), and the results can be presented using the precision recall curve (PRC). The 

methods for testing the model are shown in MAT-Script 4 with an overlap value of 

0.5 to ensure anchor boxes overlap well with the bounding boxes in the training 

data. For the prediction to be declared positive, there must be a marginal overlap 

between the ground truth and the prediction boxes. 
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Table 6. Parameters for YOLOv3 Object Detection 

Parameters Description 

Dataset – Detection vehicleDataset and sample KL traffic scene data. 

Dataset – Classification CIFAR-10 (4 Classes). 

Anchor Boxes numAnchors = 6; 

Pre-Trained CNN baseNetwork = Darknet53 | Optimised Darknet-53; 

Image Dimension networkInputSize = [256 256 3]; 

Detection Source  DetectionNetworkSource = {'res23', 'res11'}; 

Epochs numEpochs = 50; 

Mini Batch Size miniBatchSize = 8; 

Learning Rate learningRate = 0.001; 

Average Precision ap = evaluateDetectionPrecision(results, testData); 

Average Miss Rate am = evaluateDetectionMissRate(results, testData); 

Confidence Score [bboxes, scores, labels] = detect(yolov3Detector, I); 

 

MAT-Script 4: YOLOv3 Model Evaluation  

# Evaluate Detection 

   results = detect(yolov3Detector,testData,'MiniBatchSize',8); 

   overlap = 0.5; 

   [ap, recall, precision] = evaluateDetectionPrecision(results, testData, overlap); 

   [am, fppi, missRate] = evaluateDetectionMissRate(results, testData, overlap); 

# Precision Recall Curve  

   subplot(1,2,1); 

   plot(recall, precision) 

   xlabel('Recall') 

   ylabel('Precision') 

   title(sprintf('Average Precision = %.2f', ap)) 

 

   subplot(1,2,2); 

   loglog(fppi, missRate); 

   xlabel('False Positives Per Image'); 

   ylabel('Log Miss Rate'); 

   title(sprintf('Average Miss Rate = %.2f', am)) 

Starting with the custom backbone, the experimental results for both the vehicle 

dataset and the sample KL traffic scene data are discussed. The default pre-trained 

networks trained on ImageNet, SqueezeNet, GoogleNet, ShuffleNet, Darknet-53, 

and Inception-V3, served as the backbone for YOLOv3, and the results are provided 

in Table 7.  

Table 7. YOLOv3 Custom CNN Backbone Results 

Sl. No. Model Backbone Scores AP50 AP75 

1.  YOLOv3 SqueezeNet 0.88 0.82 0.57 

2.  YOLOv3 GoogleNet 0.98 0.79 0.35 

3.  YOLOv3 ShuffleNet 0.96 0.83 0.35 

4.  YOLOv3 Inception-V3 0.98 0.82 0.49 

5.  YOLOv3 Darknet-53 0.97 0.85 0.55 
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Precision values for mAP-50 and mAP-75 are calculated using the COCO IOU 

metric. YOLOv3 performs well and provides good results in the old detection metric 

of 0.5 IOU, as mentioned in the original paper. As a result, mAP-50 is selected for 

the final model comparison for both the vehicle dataset and the sample KL traffic 

data. The results for a series of optimised pre-trained Darknet-53 used as the 

backbone for YOLOv3 with a vehicle dataset including the prediction confidence 

scores and average precision for mAP-50 and mAP-75 are presented in Table 8. 

Table 8. YOLOv3 - Vehicle Dataset Results 

Sl. No Model Backbone Scores AP50 AP75 

1.  YOLOv3 dNet-C53 0.69 0.78 0.40 

2.  YOLOv3 dNet-CFC 0.99 0.86 0.62 

3.  YOLOv3 dNet-CSN 0.98 0.85 0.62 

4.  YOLOv3 dNet-FIN 0.98 0.84 0.48 

5.  YOLOv3 dNet-CLR 0.98 0.84 0.56 

6.  YOLOv3 dNet-CIN 0.97 0.84 0.58 

Among the models, YOLOv3 with optimised dNet-CFC as a backbone and a 

fully connected layer in place of the final convolutional layer provided the best 

results when compared to the model with the default CNN dNet-C53. In terms of 

precision, the same model with optimised dNet-CFC scored the highest among the 

other models, with a mAP-50 of 86%. The top-performing YOLOv3 model is 

emphasised and compared to related contemporary object detection models such as 

Faster R-CNN, a two-staged model, and SSD, a single-staged model, as well as 

YOLOv3 that uses the default Darknet-53 as a backbone. The comparison results 

are provided in Table 9. 

Table 9. Comparison of YOLOv3 Models using Vehicle Dataset 

Sl. No. Model Backbone AP50 

1.  Faster R-CNN ResNet-50 0.82 

2.  SSD ResNet-50 0.79 

3.  YOLOv3 Darknet-53 0.83 

4.  YOLOv3 dNet-CSN 0.85 

5.  YOLOv3 dNet-CFC 0.86 

For the sample KL traffic scene data, YOLOv3 results with optimised pre-

trained networks as a backbone are provided in Table 10, along with the frame rate 

per second (FPS), AP-50, and AP-75.  

Table 10. YOLOv3 - KL Traffic Scene Results 

Sl. No Model Backbone FPS AP50 AP75 

1.  YOLOv3 dNet-C53 2.91 0.97 0.18 

2.  YOLOv3 dNet-CFC 2.92 0.96 0.26 

3.  YOLOv3 dNet-CSN 2.91 0.98 0.20 

4.  YOLOv3 dNet-FIN 2.88 0.96 0.18 

5.  YOLOv3 dNet-CLR 2.70 0.97 0.16 

6.  YOLOv3 dNet-CIN 3.21 0.97 0.26 
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(a) Faster R-CNN with ResNet50 

 
(b) SSD with ResNet50 

 
(c) YOLOv3 with dNet-CIN 

(ClippedReLU + Switchable Normalisation) 

Figure 8. Comparison of Confidence Scores for Vehicle Detection 

The model that maintained a balance between FPS and mAP-50 was chosen 

since practically all of the YOLOv3 models received nearly equal mAP-50. Finally, 

the model with dNet-CIN as a backbone that received the highest confidence scores, 

and FPS was selected as shown in Figure 8. 
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In terms of FPS and mAP-50, the YOLOv3 models with the two best performing 

CNNs as backbones are compared, Faster R-CNN, and SSD. The results are shown 

in Table 11, whereas the SSD model shows a massive variation between FPS and 

mAP-50. Despite the model's high speed, its average precision is far below that of 

other models. So, when YOLOv3 is compared to other models, it performs well 

using an optimised dNet-CIN as the backbone, with an FPS of 3.21 and a mAP-50 

of 97%.  

Table 11. Comparison of YOLOv3 Models using KL Traffic Data 

Sl. No. Model Backbone FPS AP50 

1.  Faster R-CNN ResNet-50 2.84 0.94 

2.  SSD ResNet-50 36.07 0.16 

3.  YOLOv3 Darknet-53 2.75 0.94 

4.  YOLOv3 dNet-CFC 2.92 0.96 

5.  YOLOv3 dNet-CIN 3.21 0.97 

The current study proves that transfer learning can be useful for various 

computer vision problems, especially ones with small datasets. The primary goal of 

this study was to optimise Darknet-53 based on our previous study findings to 

improve the YOLOv3 model. We conducted the experiment in MATLAB R2021a, 

where the complete CNN architecture can be seen, which helped us in the selection 

of freezing the initial layers. Darknet-53 optimisation using MATLAB created a 

different perspective in image classification to enhance the speed and accuracy of a 

CNN architecture. With the availability of proper datasets, CNN models have the 

capability to take medical imaging technology further, providing a higher level of 

automation in medical imaging, including image processing and analysis. The 

improved YOLOv3 object detection model provided a better prospect for detecting 

vehicles with different viewpoints even with the small amount of training data. With 

a huge amount of data and proper training, the YOLOv3 model can be implemented 

with webcams for real-time traffic monitoring and other relevant object detection.   

 5. Conclusion and Future Work 

    We conducted a study to investigate the performance of five pre-trained 

networks: SqueezeNet, GoogleNet, ShuffleNet, Darknet-53, and Inception-V3, 

employing various epochs, learning rates, and mini-batch sizes based on transfer 

learning. The initial convolutional layers of selected pre-trained CNNs were frozen 

to keep the weights intact, and the final layers of the pre-trained CNN models were 

replaced either with a fully connected layer or a convolutional layer, and a new 

classifier replaced the classification layer. A confusion matrix was used to evaluate 

each of the models after they had been trained, and in terms of LR, Darknet-53 

delivered impressive results with LR-0.0001, achieving a maximum accuracy of 

94.70%. The fact that Darknet-53 was the only CNN that produced an error (out of 

memory) over batch-64 is most likely due to GPU memory shortages. Darknet-53 

was optimised using switchable normalisation techniques to address the memory 

issue. The optimised Darknet-53 increased the validation accuracy, reducing the 

training time considerably, and the GPU memory issue was rectified as well.  The 

Darknet-53 optimisation yielded a combination of new results, which were then 
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used as a backbone for improving the YOLOv3 object detection model. The 

YOLOv3 model with dNet-CFC as a backbone provided the highest mAP of 86% 

for the vehicle dataset. YOLOv3 with dNet-CIN as the backbone delivered the best 

results for the KL traffic data, with an FPS of 3.21 and a mAP of 97%. 

For the Darknet-53 optimisation process, only a few activation functions and 

switchable normalisation by updating the initial layers of batch normalisation layers 

with instance and final layers with layer normalisation were tested. In the near 

future, other activation functions will be prioritised, and group normalisation 

techniques will be considered for experimental work. In order to further optimise 

Darknet-53, fine-tuning the weights and other parameters will be prioritised. A 

diverse dataset will be focused on and prioritised in the future to begin the 

evaluation and testing of the YOLOv3 object detection model. Two detection heads 

were chosen for effective object detection in the improved YOLOv3 model. It can 

also be explored with a single or multiple detection heads depending on the size of 

the object and the dataset. 
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