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Abstract 

Android operating system occupies more than 80% of the world market share in mobile operating 

system. The popularity of the Android operating system motivates cybercriminals to develop 

malware targeting this platform. In the first half of the year 2021, there were 1.3 million new 

malicious Android applications circulated on the globe which the malware analysts need to analyse. 

Traditional malware analysis techniques are no longer reliable to analyse the huge amount of 

malware, and they require more resources to process and store them. This research proposed a 

different approach to analyse Android malware and maintain high classification accuracy with 

minimal resource usage. 3,900 Android applications consist of malware downloaded from Android 

Malware Dataset, and benign samples downloaded from APKMirror website were used in this 

research.  The preliminary results of the study show that the image pattern from the same family are 

analogous meanwhile different family of malware presents distinctive image pattern. Thus, further 

analysis is needed for different sizes and rotation of extracted malware images. 
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1. Introduction 

We live in the digital era where most of our daily activities involve the Internet. 

Smartphone is the technology in our hands that we use to get connected to the 

Internet and communicate with our families and friends. With smartphones, we can 

send chat messages, get the latest updates from online news, or socialize with our 

friends using social media. 

G Data is a company that developed the world’s first antivirus software had 

released a report that shows more than 1.3 million new malicious Android 

applications were in circulation in the first half of the year 2021 [1]. This indicates 
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that cyber-criminals are eager to target Android devices and they keep on releasing 

more and more Android malware every day. The Android malware comes in several 

types and there are trojan, backdoor, worms, botnet and spyware [2]. 

The rest of the paper is organized as follows: Section 2 summarizes the existing 

literature related to this study. The data source and methodology are presented in 

Section 3. This is followed by the results and discussion in Section 4. Finally, 

Section 5 provides the conclusion of this study.  

 

2. Literature Review 

There are two types of analysis that are normally being used by malware analysts; 

static analysis and dynamic analysis [3]. Static analysis or signature-based analysis 

is based on specific strings from the disassembled code without executing the binary 

file. These strings act as the feature and signature of the malware. This analysis can 

quickly capture the syntax and semantic information for thorough analysis based on 

the signature database. Even though this technique is fast and accurate, it is easily 

disturbed if the malware uses code obfuscation and encryption technology. It cannot 

detect new malware because the feature of the new malware is not found in the 

signature database [4]. 

The second type of analysis is dynamic analysis. This technique will analyse the 

malware behaviour such as network activities, system calls, and file operations by 

executing the malware in a sandbox. This technique can be used to detect newly 

created malware because it is not dependent on the malware signature. 

Unfortunately, this technique has disadvantages where it takes time to execute and 

affects the system’s performance [5]. 

Naseer et al [6] had summarised issues and challenges in conducting malware 

analysis. One of the challenges is the limited number of computing and storage 

resources in malware analysis. Due to the number of new malware that keeps 

emerging, malware analysts need to continually gather these malwares to keep their 

malware detection accurate. This activity had cost them money to maintain their 

machine processing power and storage space resources.  

Visualization-based techniques have been introduced to analyse computer 

malware where the binaries of the malware were translated into images and analysis 

were done on the images [7]; [5]; [8]; [9]; [10]). The techniques had improved the 

way to identify and classify malware binaries without the need to do in-depth 

analysis and achieved more than 90% classification accuracy by using machine 

learning on the images.  

The machine learning algorithms that were used to classify the malware are K-

Nearest Neighbours ([11];[12];[8];[9]), Random Forest and Support Vector 

Machine [13]; [8];[9], XGBoost and LightGBM [14].  
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Many studies on visualisation-based techniques have been done on computer 

malware but not many studies on Android malware [15]; [16]. Based on the 

promising results from computer malware studies, these techniques will be used to 

identify and classify Android malware. 

2.1 Malware Visualisation 

 

Malware visualisation technique was first introduced by L. Nataraj  where the 

computer malware binaries were presented in grey scale images [17]. A byte 

contains 8 bits (8 binary numbers) where these numbers can be converted into 

decimal numbers starting from 0b00000000 (0) up to 0b11111111 (255). Each byte 

represents a grey level where 0 represents black, and 255 is white, while the other 

values between these two numbers represent different degrees of grey colour.  

   

These bytes values are organised into a two-dimensional matrix and visualised 

as an image. Based on L. Nataraj., the image's width depends on the size of the 

binary file while the height is changed accordingly as shown in Table 1. 

 

Table 1:Image width based on file size range 

File Size Range Image Width 

< 10 kB 32 

10 kB – 30 kB 64 

30 kB – 60 kB 128 

60 kB – 100 kB 256 

100 kB – 200kB 384 

200 kB – 500kB 512 

500 kB – 1000 kB 768 

> 1000 kB 1024 

 

By visualising the malware binary into an image, malware analysts can visually 

view the malware structure and identify the similarity between one image and the 

other. The example is shown in Figure 1 below, where two malware families show 

different image patterns. However, when it comes to malware from the same family, 

the images have the similarities of the same patterns between each malware instance 

[7]. 
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Figure 1: Malware visualisation from two different malware families 

Another technique was done by [11] where he visualised the Android malware 

binaries into four different colour formats, i.e. Grayscale, RGB, CMYK and HSL. 

For the grayscale, the technique he used is similar to [17]. RGB stands for Red (R), 

Green (G) and Blue (B) is a colour format that is very popular in computer graphics 

and image processing. Instead of just using 8 bits, RGB will use 24 bits to define a 

colour from 16 million possible colours. 

While for CMYK, the colour format is usually used for printing purposes, and it 

is almost similar to RGB. It is just that the CMYK represents the colour components 

for Cyan (C), Magenta (M), Yellow (Y) and Black (K). Finally, for HSL it stands 

for Hue (H), Saturation (S) and Luminance (L) where hue defines the colour tone, 

saturation defines the colour tone with grey, and luminance defines the lightness of 

the colour. 

3 instances of 
malware from 

Dontovo.A 
family 

3 instances of 
malware from 

Fakerean family 
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Figure 0:  Sample of benign and malware in four image formats (Grayscale, 

RGB, CMYK and HSL) by [10] 

 

2.2 Feature Extraction 

 

Image processing can be used to help in image segmentation and classification 

of images. One of the algorithms that can be used in feature extraction is GIST [7]; 

[15]. GIST contains the scene feature information obtained in a short time, which 

can be used as a vector to represent the image feature. It has five perceptual 

properties [18] naturalness, openness, roughness, expansion and ruggedness. 

Another feature extraction algorithm is Local Binary Pattern [19]. The image 

pixels are reorganized into a 3x3 grid and the value at the centre is the threshold for 

the grids. The threshold value will be compared with the neighbour pixels. If the 

neighbour’s pixel value is greater than the threshold, the value for the neighbour 

will be ‘1’ and if the neighbour’s pixel value is less than the threshold, the value 

will be ‘0’. 

2.3 Image Classification 

 

Image classification is a proses to identify and classify samples with features 

similarities from the trained data.  The classification can be done by using machine 

learning algorthims where the features will be trained and tested with the model. 

Random Forest (RF) is one of the machine learning algorithms that can be used for 

classification. RF has been used in many types of research related to malware image 

classification [11]; [15]. RF is an ensemble machine learning where it works by 

constructing a multitude of Decision Tree during training time and providing the 

class based on the total votes from the Decision Tree output. 
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XGBoost is another machine learning that can be used for image classification. 

XGBoost or eXtreme Gradient Boosting is a scalable machine learning for tree 

boosting. In 2015, 17 out of 29 machine learning challenges were solved using 

XGBoost machine learning. It uses less resources, less training time and produces 

high prediction accuracy [20]. 

 

3.  Data and Methodology 

 
3.1 Data Source 

 

Related works had been studied, discussed and reviewed to identify the problem 

related to Android malware analysis. The currently available techniques to visualize 

and classify Android malware were identified. The type of image to generate, image 

feature extraction algorithms to be used, and relevant machine learning algorithms 

to classify the image had been identified in this phase. In this phase, we able to 

identify how to calculate the accuracy of the classification technique. 

Data used for this study are APK files from two categories, malware and benign 

samples. We have obtained 24,553 Android malware samples from Android 

Malware Dataset project from Argus Cyber Security [21]. This dataset contains 71 

malware families collected from the year 2010 until 2016.  

 

3.2 Image Creation 

 

One classes.dex file will be extracted from each randomly selected APK file. In 

this phase, all these data sections including the classes.dex will be converted into 8-

bit gray scale image. 

 

But before the input file can be converted into an 8-bit image, the script will get 

the size of the input file. This file size is used to determine the image's width that 

will be created based on the information in Table 1. 

 

The input file will be read as binary and each 8-bit (1 byte) of the data will be 

converted into gray scale pixel of the image. If the 8-bit value is 0b00000000 (0), 

the pixel colour will be black. And if the 8-bit value is 0b11111111 (255), the pixel 

will be white. While the byte value between these two numbers will represent 

different degrees of grey colour. 

 

And finally, the images will be resized into 64x64 pixels to ensure all images are 

in using the same dimension for feature extraction and classification process in the 

later phase. 

 

 

3.3 Image Feature Extraction 
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Computer vision cannot view the image as humans do. If the image has a ‘car’ 

object, humans can identify the image has tyres, headlamps, door, etc that represent 

a ‘car’. But for computer, it needs digital information to analyse and translate that 

data as a ‘car’.     

 

To get that information, the features from the image need to be extracted where 

the computer will use this information to identify and classify the image 

accordingly. 

 

GIST descriptor is an image feature extraction that will be used in this 

experiment. It will extract the information of the scene using low dimensional 

feature vectors, and it performs well in scene classification. 

 

The image files created from the previous phase will be the input in this 

workflow. The system will extract the malware family name based on the filename 

format that we have set in the previous section.  

 

Then the system will extract the features from the given image using the GIST 

descriptor. The features will then be stored in a dataset based on the family name, 

section type and orientation. 

 

For example, we have ten images from ‘fusob’ malware family that have been 

rotated to 90° from ‘data’ section. The system will append all features from these 

ten images into one single NumPy file and become the dataset for that image group. 

 

This process is repeated until all images have been extracted their features. 

 

 

4. Results and Discussion 

 
The input for this experiment is the APK files consisting of benign and malware 

samples. For benign samples, 300 APK files were downloaded from APKMirror 

website. While for the malware samples, 300 APK files were randomly selected 

from Android Malware Dataset (AMD), released by Argus Lab. 

 

4.1 APK benign and malware samples 

 

Table 2 shows the number of samples and Android malware families that have 

been randomly selected for this experiment. These samples consisted of 300 APK 

files from APKMirror website and 3,600 samples are the malware APK files from 

12 different families in Android Malware Dataset. 
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Table 2:  APK files for benign and malware samples 

No Type Family Name Source Number of Samples 

1.  Benign APKMirror APKMirror 300 

2.  Malware Airpush AMD 300 

3.  Malware Bankbot AMD 300 

4.  Malware Dowgin AMD 300 

5.  Malware Droidkungfu AMD 300 

6.  Malware Fakeinst AMD 300 

7.  Malware Fusob AMD 300 

8.  Malware Jitsu AMD 300 

9.  Malware Kuguo AMD 300 

10.  Malware Lotoor AMD 300 

11.  Malware Mecor AMD 300 

12.  Malware Rumms AMD 300 

13.  Malware Youmi AMD 300 

 Total 3,900 

 

The randomly selected samples from Android Malware Dataset is recorded in a 

log file for reference. The log file records the path where the APK files were 

selected. Some malware families in Android Malware Dataset might have multiple 

varieties. With this log file, we can easily identify the selected APK files from which 

variety and family. 

Figure 7 shows the APK files that were randomly selected from ‘airpush’ 

malware family and all of them came from ‘variety1’. As been noticed, Android 

Malware Dataset used the file’s MD5 hash as the APK filename. 
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Figure 7: List of randomly selected APK files from 'airpush' family 

 

4.2 Android malware images from same family 
 

Table 3 shows four images of Android malware samples from Airpush and 

FakeInsta families. As you can see, the patterns for these four images are the same 

for each family. Even though their image lengths are different, but their image 

patterns are similar. This can be concluded that Android malware from the same 

family will have the same image pattern. 
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Table 3: Image of malware from same family 

Airpush #1 Airpush #2 Airpush #3 Airpush #4 

 

 

 

 

 

 
 

 

 

 

4.3 Android malware images from different families 

However, when the malware came from different families, the image patterns 

are different. Table 4 shows the image pattern of malware from airpush, bankbot, 

dowgin and droidkungfu family. All these images show different image patterns 

from each other.  
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Table 4:  Image pattern from different malware families 

Airpush Bankbot Dowgin Droidkungfu 

 

 
 

 

 

 

 

 

 

 

 

4.4 Resized Android malware images 
 

After the images had been created, they were resized into 64x64 pixel. This 

process is to standardize the image dimension so that all images are in the equal size 

for feature extraction and classification. 

 

Table 5 shows four-section images of an airpush malware that have been resized 

into 64x64 pixels dimension. 

Table 0:  Resized image of a malware from airpush family 

Full Header Data String 
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5. Conclusion 

In conclusion, this study is significant because currently, there is not much 

research on Android malware using machine learning with visualisation approach. 

Based on the initial work, we found a lot of research was done on computer malware 

[7];[5];[8];[9]). These research were successful and produced accurate malware 

classification results. Using this as motivation, we would like to use the same 

approach to classify Android malware and to improve the resource usage of the 

analysis. From this research, we can compare the classification performance with 

other machine learning algorithms. 

Previous research only used classes.dex file and the data section from classes.dex 

to conduct Android malware classification. This research used strings from 

classes.dex and converted them into images and used them for Android malware 

classification with machine learning. The preliminary results of the study show that 

the image pattern from the same family are analogous meanwhile different family 

of malware presents distinctive image pattern. Thus, further analysis is needed for 

different sizes and rotation of extracted malware images. 
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