
Open International Journal of Informatics (OIJI)                                      Vol.  10  Special Issue 1  (2022) 
 

 27  

_________________________________________________________ 
* Corresponding author. syahid.anuar@utm.my 
 

Transfer Learning Based Network Performance 
Comparison of the Pre-Trained Deep Neural 

Networks using MATLAB  
 
 

Senthil Kumar Jayapalan1, Syahid Anuar2 
1,2Razak Faculty of Technology and Informatics,  

Universiti Teknologi Malaysia,  
Kuala Lumpur, Malaysia 

kjsenthil@graduate.utm.my1, syahid.anuar@utm.my2 
 

Article history 
 

Received:   
02 Dec 2021 
 
Received in 
revised form:  
15 Jan 2022 
 
Accepted: 
15 Feb 2022 
 
Published online:  
20 May 2022 
 
*Corresponding 
author  
syahid.anuar@utm
.my  

Abstract 

Deep learning has grown tremendously in recent years, having a substantial impact on practically 
every discipline. The performance of the neural network will improve as the depth of the network is 
increased, but this progress will come at the cost of time and processing resources. Transfer learning 
allows us to transfer the knowledge of a model that has been formerly trained for a particular job to 
a new model that is attempting to solve a related but not identical problem. Specific layers of a 
pretrained model must be retrained while the others must remain unmodified in order to adapt it to 
a new task effectively. When faced with a challenge selecting which layers should be enabled for 
training and which should be frozen, this adaptation is commonly made employing fine-tuning 
procedures. Furthermore, similar to traditional deep neural network training, there is a typical issue 
with setting hyper-parameter values. All of these concerns have a substantial effect on training 
capabilities as well as classification performance. In this study, we examined the performance of 
five pre-trained networks such as SqueezeNet, GoogleNet, ShuffleNet, Darknet-53 and Inception-V3 
with different Epochs, Learning Rates and Mini Batch Sizes in order to evaluate and compare the 
network’s performance using confusion matrix. Based on the findings, Inception-V3 has achieved 
the highest accuracy of 96.98%, as well as other evaluation metrics including precision of 92.63%, 
sensitivity of 92.46%, specificity of 98.12%, and f1-score of 92.49 %, respectively.  

 
Keywords: Deep Learning, Transfer Learning, Convolutional Neural Network, Image 

Classification, Computer Vision. 

1. Introduction 

    The primary evolution of neural networks was stimulated by the desire to design 
a system that could imitate the human brain. The MCP model of a neuron, developed 
by McCulloch and Pitts, has made a significant contribution to the development of 
artificial neural networks [1]. The ability of conventional machine-learning 
approaches to analyze natural data in its raw form was limited. For decades, 
devising a feature extractor that turned raw data into an appropriate internal 
representation or feature vector from which the learning subsystem, frequently a 
classifier, could detect or classify patterns in the input needed precise engineering 
and extensive field expertise [2]. Representation learning is a set of techniques that 
allow a machine to be fed raw data and automatically learn the representations 
essential for detection or classification. Deep learning methods are representation-
learning methods that have numerous levels of representation. Deep learning 
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enables computational models with several processing layers to learn and represent 
data at multiple levels of abstraction, simulating how the brain receives and analyses 
multimodal information, and so implicitly capturing intricate data structures [3].  A 
CNN is one of the most popular deep learning models. It learns local and spatial 
features and patterns directly from raw data like as images, video, text, and sound 
using deep convolutional networks and non-linearity. As a result, a CNN learns 
features from data automatically, removing the need to manually extract them [4]. 
Through a sequence of successive convolutional layers, it can create complex 
features by combining simple features. The deeper layers learn to recognise 
complicated high-intensity features such as whole objects in an image, while the 
early layers learn to recognise low-intensity features such as edges and curves. Due 
to the accessibility of a huge number of annotated images, such as ImageNet, and 
significant processing power devices, such as GPUs or distributed huge-quantity 
clusters employing cloud computing, in these tasks, deep learning has a high rate of 
success. Its success had previously been limited by the need for big databases and 
extended training cycles. However, transfer learning and fine-tuning techniques 
were used to alleviate these issues. Transfer learning is a machine learning 
technique in which knowledge gained from one type of problem is applied to 
another similar task or domain [5].  

1.1 Research Background 

      Image classification is a fundamental phenomenon in computer vision. Other 
computer vision approaches such as localization, detection, and segmentation are 
built on top of it [6]. Deep neural networks (DNN) have recently been popular in 
the deep learning community for solving real-world issues like image classification, 
language translation, object identification, and speech recognition. Deeper neural 
networks, on the other hand, have been shown to have the unfavourable attribute of 
being prone to over-fitting [7]. Furthermore, the computing cost associated with 
training a deeper network is not insignificant. This makes deploying deeper models 
in a real world, such as interactive mobile applications, autonomous driving, and so 
on, a difficult process. The deep architecture also presents the dedicated concern of 
training a CNN from scratch, which necessitates massive computer power, a long 
training time, and a large amount of training data. The knowledge obtained by a 
CNN pertaining to a certain problem is transferrable to another problem, similar to 
human learning. The specificity of features rises as we progress from lower-level 
CNN layers to higher-level layers, until the last classification layer becomes 
profoundly task specific. The image features extracted by the lower-level CNN 
layers can be used to retrain the model for a completely different task, avoiding the 
need to start over [8]. In this case, all of the layers of a pre-trained CNN model can 
be employed as fixed feature extractors, with the exception of the final classification 
layer. Using the knowledge gained from earlier training, the final layer can be 
customized and retrained for a new task. Deep networks may face obstacles and 
hurdles throughout the training process, such as exploding/vanishing gradients and 
degradation. When the depth of a network exceeds the maximum, it suffers from 
the degradation problem, which results in a decline in accuracy [9]. The internal 
covariate shift, which is the change in the distribution of the input data to a layer 
during training, is another matter of concern. However, a number of optimization 
techniques, such as skip connections, transfer learning, initialization strategies, 
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optimization strategies, batch Normalization, and layer-wise training, have been 
presented to address the issues and challenges successfully. Transfer learning is a 
technique that may be used to retrain a CNN model that has been trained on a big 
dataset. 

 
Figure 1. Transfer Learning Method 

Transfer learning is frequently employed in a variety of circumstances. In 
the first layer, pre-trained models learn simple patterns like shapes and diagonals, 
then combine these components in successive layers to learn multipart features [10]. 
The models create meaningful constructs in the final layer by exploiting patterns 
learned from earlier layers. Fine-tuning is a transfer learning concept. The initial 
few layers of deep learning are trained to recognise task features. During transfer 
learning, you can delete the last few layers of the trained network and retrain with 
new layers for the target job [9]. Although fine-tuned learning experimental studies 
need some learning, they are still much quicker than learning from the scratch [11].   

Table 1. Summary of Different Pre-Trained CNN Models 

Pre-Trained 
Models Time Depth Layers Image 

Input Size Parameters 

SqueezeNet [12] 2016 18 68 227-by-227 1.24 M 
GoogleNet [13] 2014 22 144 224-by-224 7.0 M 
ShuffleNet [14] 2018 50 173 224-by-224 1.4 M 
Darknet-53 [15] 2018 53 184 256-by-256 41.6 M 
Inception-V3 [16] 2016 48 315 299-by-299 23.9 M 

The promotion of artificial neural networks (ANNs) is the deep neural 
network (DNN), which comprises many hidden layers between the input and output 
layers. DNN is capable of expressing an object well through its deep architectures 
and excels at modelling complex nonlinear interactions [17]. From 1998 to 2018, a 
number of CNN frameworks were developed, including LeNet, AlexNet, VGG 16, 
VGG 19, GoogleNet, DenseNet etc. [18]. A system designer must incorporate their 
judgement and substantial feature engineering to resolve the question of what needs 
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to be transferred. The challenge on how should knowledge be conveyed through is 
model selection and how to supplement it to enhance prediction performance [19]. 
When selecting a network to apply to a problem, different aspects of pre-trained 
models are important to consider. Network accuracy, speed, and size are the most 
important considerations. Choosing a network is usually a compromise between 
these factors. The primary goal of this research is to compare the network 
performance of the selected pre-trained models as in Table 1 based on accuracy, 
speed, and size in order to help the selection of a suitable model for image 
classification. 

2. Related Works 

    With the introduction of transfer learning as a new learning framework, by fine-
tuning pre-trained CNN models that have already been trained on ImageNet, similar 
results can now be obtained on deep learning applications. These models require a 
smaller number of training examples than developed models, which necessitate a 
significant amount of effort to acquire a big number of training instances [20]. 
Transfer learning has become increasingly important in medical image processing, 
while pre-trained deep neural networks have made significant advances in the 
medical field, including the use of magnetic resonance imaging (MRI) scans, 
computerised tomography (CT) scans, and electrocardiograms (ECs) to detect life-
threatening diseases such as heart disease, cancer, and brain tumours. Shakil Ahmed 
et. al. [10] developed a transfer learning-based framework, which was tested against 
two well-known CNN models, Inception-V3 and VGG-16, using the Kimia Path24 
dataset, which was created specifically for the classification and retrieval of 
histopathological images. Muhammed Talo [21] did the same kind of study with the 
same Kimia Path24 dataset, ResNet-50 and DenseNet-161, however, were used as 
well-known pre-trained CNN models. Samuel Kumaresan et. al. [22], to overcome 
the issue of a small dataset of welding defect X-ray pictures, transfer learning was 
employed. Jianping Ju et. al. [23] to address the actual demand of jujube faults 
detection, introduced a jujube sorting model in small data sets based on 
convolutional neural networks and transfer learning to address the classification 
requirements of dry red date defect detection. In recent years, the difficulty of layer 
selection when using transfer learning with fine-tuning has received substantial 
attention. With the widespread adoption of deep learning techniques, transfer 
learning with fine-tuning has emerged as the most common strategy for transferring 
knowledge in the context of deep learning, allowing researchers and practitioners 
to apply such deep learning methods more quickly to a variety of domain problems 
[24]. 

3. Materials and Methods 

    Prior to the boom of deep learning approaches, a lot of effort was invested into 
constructing scale-invariant features, feature representations, and image 
classification classifiers [25]. These well-crafted qualities, on the other hand, work 
against objects in natural images with a complex scenes, varying colour, texture, 
and illumination, as well as constantly changing positions and view parameters. 
Researchers have been working on sophisticated ways to increase image 
classification accuracy for decades. When the large-scale image dataset ImageNet 
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was formed in 2009, Feifei Li created the great-leap-forward advancement of image 
classification [26]. The process of correctly training a classifier is time-consuming 
and necessitates huge datasets [27]. The learning environment, gradient, learning 
rate, epoch, and mini batch size employed in MATLAB, and the steps of transfer 
learning used in this study were explained under materials and methods in the 
subsequent sections.  

3.1 Learning of Pre-Trained CNN’s  

Ø Environment – The networks are implemented in MATLAB R2021a. The 
size of input images is adjusted to match with the layers of various models. 

Ø Stochastic Gradient Descent with Momentum (SGDM) – Gradient 
descent is a popular neural network optimization approach that can tackle a 
variety of trivial issues. SGDM have been considered in this study. 
Momentum [28] is a commonly used acceleration technique in gradient 
descent method whereas the convergence process can be accelerated. 

Ø Learning Rate (LR) – When it comes to CNN training, LR is a crucial 
parameter. In this study, fixed LR-0.001 and LR-0.0001 have been chosen 
instead of reducing the LR by each epochs.   

Ø Epoch – The complete pass of the training algorithm across the entire 
training set is referred to as an epoch. In this study, the selected epoch values 
are 10, 20, 30.  

Ø Mini Batch Size – A mini-batch is a subset of the training set that is utilized 
to calculate the loss function's gradient and update the weights. Two batch 
sizes are selected as part of the experimentation process, 32 and 64. 

3.2 Methodology 

      The entire experimentation process of image classification with the dataset 
CIFAR-10 has been done with MATLAB. The transfer learning steps are illustrated 
in Figure 2 below.  

 
Figure 2. Flow of Transfer Learning Steps 



Open International Journal of Informatics (OIJI)                                       Vol.  10  Special Issue 1  (2022) 
 
 

 32 

      The CIFAR-10 dataset is downloaded and provided as input data to the pre-
trained model. Prior to loading the data, the entire dataset is divided into three main 
datasets comprising the training, validation and testing datasets. To get good 
performance, deep neural networks require a vast amount of training data. Image 
augmentation such as refection, translation, and scaling are used to increase the 
performance of deep networks in order to develop an effective image classifier with 
little training data. The pre-trained network is loaded, and a new fully connected 
classifier replaces the final classification layer. To fine-tune the model, the initial 
layers of each network are frozen as in MATLAB, allowing you to visually view 
the entire network layers. The freezing layers are chosen according to the depth, 
size, and number of layers of the pre-trained network. Afterwards, the training 
process is initiated, followed by the classification of the training, validation, and test 
images. Finally, classification accuracy is computed and based on the accuracy that 
networks are evaluated using a confusion matrix. The detailed steps in the entire 
transfer learning process performed in MATLAB are presented below. 

Transfer Learning Steps - MATLAB 
1. Prepare Data 

§ Downloading the data  
2. Load Data 

§ imds = imageDatastore(fullfile(rootFolder)) 
3. Load Pretrained Network 

§ net = SqueezeNet | GoogleNet | ShuffleNet | Darknet-53 | Inception-v3; 
4. Replace Final Layers 

§ lgraph = layerGraph(net); 
§ lgraph = replaceLayer(lgraph, learnableLayer.Name, newLearnableLayer); 

5. Freeze Initial Layers 
§ layers = lgraph.Layers; 
§ layers(1:10) = freezeWeights(layers(1:10)); 

6. Train Network 
§ Training options: {‘MiniBatchSize’, 'MaxEpochs', 'InitialLearnRate'}; 
§ net = trainNetwork(augimdsTrain, lgraph, options); 

7. Classify Images 
§ Training, Validation, Testing 

8. Accuracy and Loss Plot 
§ Validation 

9. Confusion Matrix 
§ cm = confusionmat(trueLabels, predictedlLabels); 
§ cm_chart = confusionchart(trueLabels, predictedlLabels); 

10. Reset GPU 

4. Results and Discussion 

4.1 Dataset 

      The CIFAR-10 [29] dataset has 32 x 32 colour images that are divided into ten 
classes, each with 5000 training images and 1000 test images. CIFAR-10 contains 
a total of 50000 training images and 10,000 testing images. Among the ten classes, 
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five classes have been selected for the experimental process which includes the list 
as shown below, 

Selected Classes = {‘bird’,’cat’,’deer’,’dog’,’horse’}; 
      The major developments in image and video processing rely not only on the 
development of new learning algorithms and the use of powerful hardware, but also 
on very large-scale public datasets [30]. The most widely used split ratios are 70:30; 
80:20; 65:35; 60:40 etc. whatever in which the sample size suits the nature of the 
problem and the architecture implemented. There is no fixed law for dividing 
training and trial datasets when it comes to data splitting. Some scholars have 
traditionally used the 70:30 ratio to differentiate the datasets. As most widely used 
in MATLAB, the training set of images are split into training set and validation set 
by 70:30 ratio,  

[imdsTrain, imdsValidation] = splitEachLabel(imds, 0.7,’randomize’); 
      Furthermore, image augmentation was performed on the training datasets at 
random using different values to enhance the dataset size. The images in each batch 
were randomly subjected to the following operations during the training phase, as 
specified in most of the MATLAB examples: horizontal reflection, horizontal and 
vertical translation with a random value in the range [-30 30] pixels, and horizontal 
and vertical scaling with a random rate in the range [0.9 1.1]. 

4.2 Experimental Details 

      The whole experimental process was carried out with a laptop and the 
experimental setup including the hardware, software, and its specifications are 
mentioned in the Table 2 below, 

Table 2. Experimental Setup 

Hardware/Software Specifications 
Microprocessor AMD Ryzen 7 5800H- Radeon Graphics@3.20 GHz 
RAM 16.0 GB 
GPU NVIDIA GeForce RTX 3060 Laptop GPU 
Dedicated Video RAM 6.0 GB 
Deep Learning 
Framework MATLAB R2021a – 64 bit 

Programming Language MATLAB 
Operating System Windows 10 Home Single Language 

4.3 Experimental Results 

      The tables Table 3 – Darknet-53 and Table 4 – Inception-V3 below are 
presented with the experimental results, including the hyper-parameters such as 
mini-batch size, learning rate, epochs as well as the validation accuracy and testing 
accuracy with the elapsed time to complete the training progress. Out of the five 
selected pre-trained networks, results of two of the networks are presented in this 
section which is then followed by the experimental findings.  
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Table 3. Darknet-53 – Freezing Layers: [1-14] 

Hyper 
Parameters 

Validation 
Accuracy 

(%) 

Test 
Accuracy 

(%) 

Elapsed 
Time 

(mins) 
LR – 0.001 Epoch – 30 

Mini Batch Size    
- 64 Error@19/30 (Out of Memory) 

Mini Batch Size    
- 32 89.89 86.62 207.13 

LR – 0.0001 Epoch – 30 
Mini Batch Size    

- 64 Error@19/30 (Out of Memory) 

Mini Batch Size    
- 32 90.58 86.76 203.3 

Table 4. Inception-V3 – Freezing Layers: [1-41] 

Hyper 
Parameters 

Validation 
Accuracy 

(%) 

Test 
Accuracy 

(%) 

Elapsed 
Time 

(mins) 
LR – 0.001 Epoch – 30 

Mini Batch Size    
- 64 92.78 91.6 165.16 

Mini Batch Size    
- 32 93.42 92.46 201.10 

LR – 0.0001 Epoch – 30 
Mini Batch Size    

- 64 80.29 76.54 165.8 

Mini Batch Size    
- 32 87.53 83.86 206.7 

      The experimental findings made it possible to emphasize the following 
outcomes, 

Ø Epoch-30 was chosen for further comparison based on the experimental 
findings, and the results were quite promising. 

Ø When it comes to mini batch sizes, batch 32 has shown to be more promising 
than batch 64. Also, with Darknet-53, batch 64 displayed an error due to a 
lack of RAM (out of memory), hence batch 32 was chosen for further 
evaluation and comparison.    

Ø With the exception of Darknet-53, LR-0.001 yielded favourable results 
when compared to LR-0.0001. For the subsequent studies, LR-0.001 
findings were chosen for the other four networks, and LR-0.0001 results for 
Darknet-53. 

Ø Out of the five pre-trained networks, Inception-V3 produced the best results, 
with the most layers, while SqueezeNet produced the worst results, with the 
fewest layers. 
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4.4 Performance Evaluation using Confusion Matrix 

      The ratio between the number of right predictions made and the total number of 
predictions produced is known as classification accuracy [22]. The learning 
performance of the pre-trained deep neural networks is assessed using a standard 
confusion matrix method. A confusion matrix is a summary of classification 
problem prediction outcomes. It provides insight into correct and incorrect 
classifications, as well as the types of errors made, for each specific class. In image 
classification, the confusion matrix is primarily used to compare the classification 
to the actual measurement value in order to intuitively and accurately describe the 
accuracy of model classification [31].  
      The confusion matrix can be used to directly identify the performance of deep 
CNN models, and the evaluation metrics are listed below,  

ACC = 
!"	$	!%	

!"	$	!%	$	&"	$	&%
	                                              (1) 

      where ACC stands for accuracy, which is defined as the percentage of correctly 
classified samples when a measured value is compared to a known value. 

PREC = 
!"

!"	$	&"
                                                          (2) 

      where PREC is the precision used to determine the model's ability to correctly 
classify positive values.  

SENS = 
!"

!"	$	&%
																																																									(3) 

      where SENS is the sensitivity, also known as recall, which is the frequency with 
which the model correctly predicts positive values. It's used to figure out how well 
the model can predict positive values.  

SPEC = 
!"

!%	$	&"
                                                           (4) 

      where SPEC denotes the specificity with which the model's ability to predict 
negative values is calculated. 

F1-Score = 	'	∗	")*+	∗	,*%,
")*+	$	,*%,

                                             (5) 

      whereas the harmonic mean of the precision and sensitivity is the F1-score, also 
known as the balanced F-score or F-measure.  

In MATLAB on the confusion matrix plot, the predicted class (Output 
Class) is represented by the rows, while the true class is represented by the columns 
(Target Class). The diagonal cells relate to accurately classified observations. The 
off-diagonal cells correspond to observations that were inaccurately classified. The 
number of accurately and inaccurately classified observations for each predicted 
class are displayed as percentages of the total number of observations in the 
respective predicted class in a column-normalized column summary. The number 
of accurately and inaccurately classified observations for each true class are 
displayed as percentages of the total number of observations for that true class in a 
row-normalized row summary. On the next pages, the confusion matrices for LR-
0.001 and LR-0.0001 are presented and discussed. 
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(a) Inception–v3 

 

 

(b) Darknet-53  

Figure 3. Confusion Matrices for (a) LR-0.001 and (b) LR-0.0001  

    The above Figure 3 demonstrates the confusion matrices for the pre-trained 
networks in which (a) represents Inception-V3, and (b) Darknet-53. When it came 
to LRs, among the pre-trained networks LR-0.0001 was outperformed by LR-0.001. 
Under LR-0.001, almost all of the networks performed well in classifying the 
images, however under LR-0.0001, most of the networks struggled to predict the 
positive values. Based on the confusion matrices, the following inferences were 
discovered, 
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Ø In terms of LR – 0.001, Inception-V3 outperformed the rest of the pre-
trained networks in the model's ability to predict positive values followed 
by GoogleNet and Darknet-53. With Inception-V3, all five classes were 
correctly classified with an overall accuracy of above 90%. Among the 
classes deer class made the highest score whereas 957 out of 1000 images 
were classified correctly. When it comes to prediction, the horse class scored 
high of correctly predicting 98.9% of the positive values. For all the five 
classes, GoogleNet scored 80% or higher, with the horse class getting the 
highest prediction score, predicting 97.5% of positive values. Darknet-53 
scored the highest among the networks a prediction score of 96.2% in the 
horse class but got a very least score of only 76.1% in the cat class. 
ShuffleNet had a mediocre performance, scoring 94.7% in the horse class 
and a very low prediction score of 73.1% in the bird class. SqueezeNet had 
the lowest classification performance of all the networks, with a prediction 
score of 95.3% in the horse category and 64.5% in the cat category. 

Ø In terms of LR – 0.0001, Darknet-53 outperformed the rest of the pre-trained 
networks in the model's ability to predict positive values followed by 
Inception-V3 and GoogleNet. If compared with LR 0.001, Darknet-53 
scored the maximum classification accuracy under LR 0.0001 with the 
highest score of  97% among all the networks. With prediction, scored the 
highest of 98.9% in horse class and  75.9% in cat class. The bird class 
received the highest classification score of 93% in Inception-V3, with 930 
out of 1000 images correctly classified, whereas the model struggled to 
predict the positive values of the bird class, accounting for 77.1%. In 
GoogleNet among the five classes, horse class got the highest prediction 
score of 91.1% and cat class got the lowest score of 81.7%. ShuffleNet had 
an average classification compared to other networks whereas horse class 
got the highest prediction score of 91.5% and cat class got the lowest score 
of 76.1%. SqueezeNet had the lowest performance among all other networks 
with the lowest prediction score of 66.0% for the bird class whereas got the 
highest score of 90.7% for the horse class. 

Table 5. Evaluation Results of the Pre-Trained Networks 

CNN      
Models 

Precision 
(%) 

Sensitivity 
(%) 

Specificity
(%) 

F1-Score 
(%) 

Accuracy 
(%) 

LR – 0.001 Epoch – 30  
SqueezeNet 80.53 78.9 94.73 79.16 91.56 
GoogleNet 89.16 88.82 97.21 88.85 95.53 
ShuffleNet 86.15 85.08 96.27 85.13 94.03 
Darknet-53 87.15 86.62 96.65 86.68 94.65 
Inception-V3 92.63 92.46 98.12 92.49 96.98 

LR – 0.0001 Epoch – 30  
SqueezeNet 77.89 76.28 94.07 76.14 90.51 
GoogleNet 86.14 86.1 96.53 86.06 94.44 
ShuffleNet 82.76 82.54 95.63 82.57 93.02 
Darknet-53 88.29 86.76 96.69 86.70 94.70 
Inception-V3 84.55 83.86 95.96 83.91 93.54 
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The results of the classification metrics evaluation of the five pre-trained 
networks for both the Learning Rates of 0.001 and 0.0001 are summarized in the 
above Table 5. According to  the evaluation results it is evident that the networks 
performed well on the LR-0.001 in compared to LR-0.0001 except for Darknet-53. 
Darknet-53, in compared to the other four networks, showed promising results with 
a LR-0.0001, whilst the other networks' performances were on the decline. 

4.5 Pre-trained Networks Performance Comparison 

      The performance comparison of the five pre-trained networks, encompassing 
both LRs, is shown in the Table 6 below. 

Table 6. Performance Comparison of the Pre-Trained Networks 

CNN   
Models 

Precision   
(%) 

Sensitivity       
(%) 

Specificity 
(%) 

F1-Score   
(%) 

Accuracy   
(%) 

SqueezeNet 80.53 78.9 94.73 79.16 91.56 
GoogleNet 89.16 88.82 97.21 88.85 95.53 
ShuffleNet 86.15 85.08 96.27 85.13 94.03 
Darknet-53 88.29 86.76 96.69 86.70 94.70 
Inception-V3  92.63 92.46 98.12 92.49 96.98 

According to the comparison of the pre-trained networks, Inception-V3 has 
achieved the highest accuracy of 96.98%, as well as other metrics such as precision, 
sensitivity, specificity, and f1-score. The other networks produced somewhat lower 
results than Inception-V3, but altogether, all five pre-trained networks attained an 
accuracy of 90% or higher. 

5. Conclusion 

    Transfer learning is a method of learning that involves applying previously 
learned knowledge to new problems. Small datasets can be used to train a deep 
model through transfer learning and fine-tuning. In this study, the performance of 
five pre-trained networks such as SqueezeNet, GoogleNet, ShuffleNet, Darknet-53 
and Inception-V3 have been experimented with different epochs, LRs and mini 
batch sizes. The experiment was carried out entirely in MATLAB R2021a, and the 
pre-trained networks were evaluated using a confusion matrix based on the results. 
The experimental findings shows that each pre-trained network produced different 
results with different hyper-parameters in the prediction of positive values of the 
five classes. All the five networks yielded promising results over the mini batch 
size-32, and epoch-30. Darknet-53 made an error with the mini batch size-64 due to 
lack of GPU memory. In order to continue with the evaluation procedure utilizing 
the confusion matrix, epoch-30 and mini batch size-32 were chosen for the 
performance comparison. In terms of LR, Darknet-53 delivered impressive results, 
with LR-0.0001 achieving the maximum accuracy of 94.70%, as shown in Table 5. 
Overall, the Inception-V3 model had the highest accuracy with LR-0.001 at 96.98%, 
as well as other measures including 92.63% precision, 92.46% sensitivity, 98.12% 
specificity, and 92.49% f1-score respectively. 
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Future Work – In this research, presented a transfer learning performance 
comparison between the selected five pre-trained networks. The freezing of 
networks layers was selected based on the network depth, size, and number of 
layers. Only the initial layers were frozen; however different set of layers can be 
frozen. In the future research, focus will be given to freeze multiple set of layers 
and to compare the results of frozen and non-frozen layers of the pre-trained 
networks. For further evaluation and comparison, may also choose between 
different datasets and other pre-trained deep neural networks. 
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