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Abstract 

Navigation for the robot has numerous applications in industries such as agriculture, couriers, 

autonomous vehicle, and many more. Navigation seems a simple problem for humans but complex 

for machines. Robot navigation problems can be made up of mapping, localization, path planning, 

and motion control. But there are limitations when it comes to the real world. The nature of dynamics 

in the real world makes it hard to adapt to certain situations since a lot of conventional controllers 

cannot adapt. This is where machine learning can be used since it can adapt according to the 

situations it has learned. The closed-loop control systems have a feedback loop, and Reinforcement 

Learning is most suitable to develop where this paper explores how to develop a controller using 

deep reinforcement learning. The algorithm used is the Deep Deterministic Policy Gradient 

algorithm with multi-agents. The simulated robot inside the environment has a simple dynamics 

system for simplicity's sake for this proposed project, and the algorithm is designed to work with the 

environment developed by a third-party using OpenAI Gym. The robot is controlled using the neural 

network or controller network with the same as the multi-input multi-output system. The neural 

network was designed and also constructed using (Full abbreviation) LSTM with a fully connected 

neural network. The algorithm and evaluation of the model will be part of future works to achieve 

the objectives of the proposed project.  

 
Keywords: Reinforcement Learning, Deep Deterministic Policy Gradient, Multi-Agents, Control 

System, Navigation. 

 

 

1. Introduction 

This section discusses the robot navigation of the past and current methods to 

solve robot navigation and the problem that needs to be solved, such as the 

complexity of the environment needs better controller using machine learning. 

 

1.1. Background 

Robot navigation has many applications in different industries, from agriculture, 

automotive to courier shipping, and more. Many mobile robots typically need 

navigation algorithms which are to move from one point to another point in 

environment space that typically has obstacles, and the robot has to be able to avoid 

obstacles while navigating to a goal [1]. Other things are the types of environments 

such as outdoor, semi-outdoor, indoor, and semi-indoor [2]. Navigation can be 

divided into geometric, topological, semantical, and perception models for 



Open International Journal of Informatics (OIJI)                                                  Vol. 9 No. 2 (2021) 
 

80 

navigation [3]. Many researchers have proposed various solutions related to 

navigation problems, such as mapping by scanning the surroundings to produce an 

occupancy map represented by binary or probabilistic values for robot 

understanding of obstacles in environment space [4]–[6]. But mapping requires 

localization of the robot, which is to determine the position of the robot in a known 

map which obtains by feature extraction using vision or time of flight sensors for 

scanning the environment [7]. By determining robot localization, mapping the 

unknown environment is possible, then a path to goal position can be realized. 

Because the robot, while moving toward goal position, needs to know the 

environment and currently using simultaneous localization and mapping (SLAM) 

techniques for this problem which intends to do all related problems in multi-tasking 

such as mapping the environment while measuring the robot location in the 

environment [8]. But using SLAM came at a great cost which is computation time 

[9] which means it needs a high-performance system to be used which is not suitable 

when designing for certain applications, which is a real-time embedded system 

since this method deploys a high-level controller and a low-level controller.  

 

Realistic speaking, the real world is dynamic by nature and should be solved in 

dynamic ways. Although the nature of dynamic for the simulated 2D environment 

might be difficult but can still be simulated in a static environment. Because 

limitations of using conventional controllers such as PID which are suitable for a 

low-level controller and not a high-level controller. Currently, it is solved by 

combining two different controllers, such as a high-level controller and a low-level 

controller, where a high-level controller is fed to the low-level controller rather than 

a controller with the ability to understand high-level of understanding the world 

surrounding and execute low-level instruction to the actuator. Recently researchers 

have been using machine learning to solve navigation problems such as supervised 

learning and reinforcement learning [10]. The suitable type of learning would be 

reinforcement learning since most of the algorithms are in the context of dynamic 

programming. But training this system can take longer times, but it can learn in off-

policy, which can shorten the learning process since it learned from past random 

actions. The aims of this work are to identify different types of simulation 

environments, to develop a controller using a reinforcement learning algorithm, and, 

lastly, to develop a neural network structure. The scopes of the works are to simulate 

two dimensions of indoor space or environments, based on wheeled robot motion, 

and multi-agents of a maximum of 5 depending on environment sizes.  

 

2. Literature Review 

This chapter will review the different existent methods that are currently 

available, including the implementation which is relevant to this work. Firstly, to 

find suitable algorithms and to develop a controller using RL algorithms. Secondly, 

to design structures of neural networks using deep learning to meet the design 

requirements. Next,  to determine the environment settings to be used in the 

deployment after training. And lastly, to evaluate the designed model.   
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2.1. The Reinforcement Learning Algorithm 

The algorithm is chosen based on whether the robot in the environment has inputs 

spaces in continuous or discrete and outputs, which are the measurement states in 

continuous or discrete. This work considers robot dynamics and, therefore, will 

have continuous action (the inputs) and continuous observation state (the outputs) 

for the environment. There are several candidates such as Deep Q Network (DQN) 

[11], Asynchronous Advantage Actor-Critic (A3C) [12], Asynchronous Actor-

critic (A2C) [13], Model-based approach [14]–[18], Deep Deterministic Policy 

Gradient (DDPG) [19]. Based on these papers, it is shown that the model-based 

approach has low adaptation on a dynamic environment and, therefore, will not be 

considered. Using DQN might work for the project, but it came with limitations 

since it is the extended version of Q-learning using the neural network as a function 

approximator of Q-learning, which are continuous actions that need to be 

discretized actions might not be a good idea. Next are the A2C and A3C since they 

were somewhat similar. These algorithms can be used on continuous action, and 

continuous states which involve many environments (using multi-core CPU or 

synchronous) in A2C and used independent networks on the parallel environment 

to tune the global network weights parameters where A3C used asynchronous ways 

means that rather than waiting for all parallel environment to be executed the action, 

it will execute without waiting for all parallel environment to tune the global 

network. This is somewhat similar to a centralized system where the main core 

control all the agents.  Here, the agents are referred to as controllers which use deep 

learning where the robots refer to robots (or plants in the control system) inside the 

environment, and the agents will control the robots by sending actions such as 

arbitraries movement or continuous action such as voltage or position (for example 

closed-loop position controller) to the robots and therefore the agents will act as 

controller. 

 

2.2. The Neural Network Structure 

There are different types of artificial neural networks (ANN), such as multilayer 

perceptron (MLP), convolution neural network (CNN), recurrent neural network 

(RNN), and others [20][21]. Many AI researchers suggest using long short-term 

memory (LSTM), which is under RNN class means it is a type of neural that can 

store memories and these memories will change based on receiving inputs data [22]. 

Since humans used memories when to navigate are probably why several 

researchers suggest using LSTM, but using this network alone might not be a great 

idea since the structure of inputs and outputs need to be compatible such as the 

dimensions of action and measurable states of the environment [23]–[26]. Based 

on previous works, basic layers of the network can be constructed, such as input 

layer, LSTM layers, and output layers using dense layer. For Q-network, the dense 

layers are sufficient for this project. DDPG algorithm required 4 networks which 

are policy network, Q-network, target policy network, and target Q-network. The 

target network is an exact structure with main networks, but the weights of the 

network are updated using a different algorithm, as shown in the DDPG algorithm. 

The network can be constructed to form a reactive controller system [27] which 

should be the basis of a simple navigation problem. 
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2.3. The Environment 

Choosing the environment for the agents to learn behaviors such as obstacles 

avoidance (dynamic and static), goal-seeking, and motion behaviors (linear and 

rotation movement) needs to be considered. Since the developed controller model 

required evaluation, therefore, needs environments for training while others for 

testing after training sessions are over. OpenAI Gym is a great tool, and many 

researchers have been using OpenAI Gym especially for developing RL algorithms 

for training and evaluation [22].  Several environments are used with the purpose 

of training and then testing on a few unseen environments to determine performance 

and reliability. The criteria for choosing must be based on the requirement needed, 

such as the ability to move based on input action to specific location serve as 

location point and also came with obstacles such as a walls-like maze. Several 

environments can be used, but the most suitable is the gym-miniworld [28] 

developed by a third-party using OpenAI Gym application programming interface 

(API), and although the design is simple, it can be customized to include others that 

are lacking, such as robot dynamics. These also have many different environments 

and can be used in this project to achieve the objectives and also within the scopes. 

Although the observable states are fully observable to be customized to our needs 

to works similar to partially observable arrays of ranging sensors. 

 

2.4. The Evaluation of the Model 

During the training, it is important to know whether the model is training properly 

by looking at the increasing cumulative or average reward until it converges. When 

converge is occurred, and there is no increasing reward, and the agent is not able to 

reach specifications (not reached accuracy or loss), and this can be solved by 

increasing the hidden layers of the network. To evaluate the model for navigation is 

dependent on the success rate to reach the goal location. Quite similar to supervised 

learning, where the accuracy or loss to predict assigned labels can determine the 

performance of the model, but for application for navigation, especially for goal-

seeking behavior, it can be determined by the total reached goal location with the 

total attempt. Based on other works [refs.], the accuracy can be reached somewhere 

80% to 98%, but 95% accuracy is acceptable since humans can reach around 95% 

for different tasks, and it should be sufficient for our project purposes. 

 

3. Research Methodology 

The methods are chosen based on the literature review. Although DDPG was 

developed for a single agent but using it for multi-agents can still work as seen in 

A3C algorithms implementation. This section describes the details of the proposed 

method, diagram concerning the project, and resources to be used. 

 

3.1. The Proposed Method 

Below is the proposed method, which is the DDPG with multi-agents using a 

centralized global network and several independent networks for each agent. The 

DDPG algorithms required 4 networks, namely policy or actor-network, critic 

network, and target networks for actor and critic. The outputs of the actor-network 
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will predict the next action for the robot, as shown in the block diagram. The 

environment and the agent neural networks need to be initialized first by predefined 

parameters such as training hyperparameters, neural networks structures, weights 

parameters, and others. After initializing the parameters, read the initial states and 

feed them into the model to obtain the action. Execute the action to obtain the next 

states and also how much the reward to the store in the memory. Then sample from 

memory to compute the Bellman equation to compute the loss function of Q-

network that can adjust the weights using backpropagation. Then the DDPG 

algorithm can be executed with some modifications for multi-agents.  In general, 

the data to be collected on various agents does not make the distinction on different 

agents, including its does not cooperative and competitive since each agent will 

have its goal location. Therefore, the data will be more diverse using a single 

environment, but many agents and the agents can also learn to perceive other agents 

as moving obstacles. Table 1 shows the proposed DDPG with a multi-agent 

algorithm. 

 

The proposed robot-environment interface is shown in Figure 1 below to 

illustrate how different components operate as a single system to train or evaluate. 

The agent itself is a MIMO controller with states as input and action as output. For 

simplicity, the outputs model actions are linear movement and rotation movement 

such as move forward or backward, 𝑀𝐹𝐵 and rotate right or left, 𝑅𝑅𝐿. The inputs are 

the positions in x-axis coordinate, y-axis coordinate, and z-axis orientation 

(𝑃𝑋 , 𝑃𝑌, 𝑂𝑧). Other inputs are robot velocities such as linear velocity and angular 

velocity (𝑉, Ω ). The last pieces of feedback inputs are the array of obstacles 

distances from robot positions ( 𝐷1, 𝐷2, 𝐷3, 𝐷4, 𝐷5 ). Although these are partially 

observing states, it should be enough to navigate to the goal while avoiding the 

obstacles similar to a reactive system. 

 

Table 1: The DDPG with a multi-agent algorithm 

 

DDPG with multi-agents 

Initialize the environment 

Randomly Initialise critic-network Q 𝑠,  𝑎|𝜃𝑄 , actor-network 𝜇 𝑠|𝜃𝜇   with weights 𝜃𝑄  and 𝜃𝜇 . 

Initialize target networks Q′ and 𝜇′ with weights 𝜃𝑄′ ← 𝜃𝑄  and 𝜃𝜇′ ← 𝜃𝜇  

Initialize replay buffer, 𝑅 

For episode=1, M do 

Initialize multi-agents exploration 

Receive initial observation, 𝑠𝑖  
For time=1, T do 

Select action (Run policy network) for every agent 

Store for every agent  𝑠𝑖 ,   𝑎𝑖 ,   𝑟𝑖 ,   𝑠𝑖+1  in 𝑅 

Sample a random minibatch of 𝑁 transitions from 𝑅 

Set 𝑦𝑖 = 𝑟𝑖 + 𝛾𝑄′ 𝑠𝑖+1,  𝜇′ 𝑠𝑖+1|𝜃𝜇  |𝜃𝑄  

Update critic by minimizing the loss, 𝐿 =
1

𝑁
  𝑦𝑖 − 𝑄 𝑠𝑖 ,  𝑎𝑖|𝜃

𝑄  
2

𝑖  

Update policy using sampled policy gradient 

𝛻𝜃𝜇 ≈
1

𝑁
 𝛻𝑎

𝑖
𝑄 𝑠𝑖 ,  𝑎𝑖|𝜃

𝑄 𝛻𝜃𝜇 𝜇 𝑠𝑖 |𝜃
𝜇   

Update the target networks 

𝜃𝑄′ ← 𝜏𝜃𝑄 +  1 − 𝜏  𝜃𝑄′  

𝜃𝜇′ ← 𝜏𝜃𝜇 +  1 − 𝜏  𝜃𝜇′  
End for 

End for 
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The structure of the network for the actor is shown in Figure 2 below. The LSTM 

cells which form hidden layers will have the same size as the input layer. More 

LSTM and dense layers will add if the performance of behavior does not meet the 

requirements. The dense layers can serve to process possible actions, which then 

feed into the environment. This structure takes inspiration from the feedback system 

and reactive system, which does not involve fully observed states. 

 

 

3.2. Tools and Platform 

The tools that were used are Anaconda [29] which is one of python distribution 

mainly used for programming the algorithm in python. Other tools such as OpenAI 

gym-miniworld for the environment that have different mazes and sizes pick to train 

or evaluate the model. The model itself used TensorFlow python API and was 

integrated as a part of the whole algorithm. 
 

4. Preliminary Results 

 

Figure 1. Block diagram of the robot-environment interface 

 

Figure 2. The Model Architecture 
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The results were carried out according to the objectives concerning the 

environment for robot navigation which are suitable such as the complexity of the 

mazes and sizes. The neural network architecture can also be easily designed 

according to the shape we want. The results are shown below in terms of 

environment and neural networks that can integrate into the algorithm. 

 

4.1. The Environments 

The environment to access reliability such as robot movement toward the goal. 

When it reaches the goal, it will reset and restart the new robot position and goal 

location. The dynamics of the robot are simple such as moving forward, backward, 

and rotating right, left. The fully observable top-down/overhead view is available 

to be used as measurable states but only needs partially observable for the proposed 

project. Other states were also available such as position in x-coordinate, y-

coordinate, and z-coordinate. The angle or the orientation is also included, but other 

states that are lacking are robot velocities and obstacles displacement, but these can 

measure from image top view of the environment. These environments, as shown 

in Figure 3, should have enough space to deploy multi-agents. 

 

 

4.2. The Agents Models 

The structure ANN such as LSTM and MLP or dense layers as the proposed 

method, there are two ways to do and below is achieved using functional API. These 

will form a basis for the controller as more layers will be added for future works.  

Figures 4 and 5 are the model summary to be used for the proposed project. The 

input layers are the signal from measured states and feedforward to the LSTM layer. 

The LSTM will have the same cells as observed states for simplicity and 

feedforward to dense layer. The dense layer also has the same neuron dimension as 

LSTM. Then lastly, to reduce the last dense layer to two for the actions. 

 

Figure 3. Training (left) and Testing (right) Environments 
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The critic network, which is Q-network shown in Figure 5, will have a much 

bigger size than the actor-network or controller network. The output from the actor 

and the critic network is important for the DDPG algorithm. There are two inputs 

which are states and actions, which then feed into separate dense layers. These two 

dense layers are then fed into concatenate layer, which links them together as a 

single dimension output to feed into the dense layer and reduce the output dimension 

to one. This out the value called Q-value, which is related to Q-learning. The target 

networks will have the same structure as the actor and critic networks. 

 

 

4.3. The Experience Replay Buffer 

 

Figure 4. The Policy Network of The Model 

 

Figure 5. The Actor Network of The Model 
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Every action simulated in the environment is stored in a replay buffer, as shown 

in Figure 6. In terms of progress, this part is finished and linked together with the 

neural network model and the environment. The function of this class will simplify 

the programming when linked to the main algorithm. The buffer store known as 

Markov process decision and the minibatch from this data will be used in the policy 

gradient equation to find the change of weights to be used for backpropagation. 

 

 

4.4. Discussion 

The controller using ANN has been successfully constructed using TensorFlow 

and can be designed as need it. Since the model uses functional API rather than 

sequential API, it was easier to construct in the code, especially for the critic 

network, since it is two networks of two inputs of actions and states and merge them 

as one-dimension array values. 

The environment overall works as expected that the robot can move inside the 

environment space using a simple command such as moving forward, backward, 

rotating right, left. The lacking feature in the environment will be part of future 

works. Every movement or time step is observed by calling function in OpenAI 

Gym. The outputs values of the states will be used to store in replay buffer. The 

reward function is simple, but in order to develop certain behaviors of the robot, the 

reward function will be formulated in future works. The environment will operate 

in top view, which gives a 2D view that can be regarded as a 2D environment. 

The main algorithm can be executed in future works by linking them together 

since most of the individual part has almost been completed. This can be used as 

part of future works to be planned the experiment. There is currently a lack of an 

environment that can be used to simulate different types of mobile robots, such as a 

multi-wheeled robot, which is the reason why a lot of works need to be done on a 

simulated wheeled robot as a part of the project. 

 

 

Figure 6. The Experience Replay Buffer 
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5. Conclusions and Future Works 

The outcomes of this research are to develop the controller, the environment, the 

DDPG algorithm with multi-agents using various API according to the proposed 

method that has been successfully carried out. To design a controller in conventional 

ways such as PID controller has limitations, but those limitations can be overcome 

using an intelligent system such as deep learning and will play a crucial role in 

future applications in dealing with a complex system to the controller. 

For future works, the proposed algorithm will be linked with the 

environment to experiment. After that, train the developed model and observe 

the robot behavior. If robot behaviors do not react as expected or do not meet 

the requirements, then some adjustments are needed, such as increasing the 

size of networks or modifying the reward function. After all the conditions are 

good, then the evaluation will be carried out in an unseen environment to be 

able to determine the performance, such as the accuracy to reach the goal 

location. 
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