
Open International Journal of Informatics (OIJI) Vol. 9 No. 2 (2021)

 79

* Corresponding author. mdridzuan@utm.my

Goal-seeking Navigation based on

Multi-Agent Reinforcement Learning Approach

Abdul Muizz Abdul Jalil1 and Mohd Ridzuan Ahmad*2

1,2Division of Control and Mechatronics Engineering, School of

Electrical Engineering, Faculty of Engineering, Universiti

Teknologi Malaysia, 81310 Skudai, Johor, Malaysia
1abmuizz@gmail.com, 2mdridzuan@utm.my

Article history

Received:

12th October 2021

Received in revised

form:

18th October 2021

Accepted:

28th October 2021

Published online:

11th November 2021

*Corresponding

author

mdridzuan@utm.my

Abstract

Navigation for the robot has numerous applications in industries such as agriculture, couriers,

autonomous vehicle, and many more. Navigation seems a simple problem for humans but complex

for machines. Robot navigation problems can be made up of mapping, localization, path planning,

and motion control. But there are limitations when it comes to the real world. The nature of dynamics

in the real world makes it hard to adapt to certain situations since a lot of conventional controllers

cannot adapt. This is where machine learning can be used since it can adapt according to the

situations it has learned. The closed-loop control systems have a feedback loop, and Reinforcement

Learning is most suitable to develop where this paper explores how to develop a controller using

deep reinforcement learning. The algorithm used is the Deep Deterministic Policy Gradient

algorithm with multi-agents. The simulated robot inside the environment has a simple dynamics

system for simplicity's sake for this proposed project, and the algorithm is designed to work with the

environment developed by a third-party using OpenAI Gym. The robot is controlled using the neural

network or controller network with the same as the multi-input multi-output system. The neural

network was designed and also constructed using (Full abbreviation) LSTM with a fully connected

neural network. The algorithm and evaluation of the model will be part of future works to achieve

the objectives of the proposed project.

Keywords: Reinforcement Learning, Deep Deterministic Policy Gradient, Multi-Agents, Control

System, Navigation.

1. Introduction

This section discusses the robot navigation of the past and current methods to

solve robot navigation and the problem that needs to be solved, such as the

complexity of the environment needs better controller using machine learning.

1.1. Background

Robot navigation has many applications in different industries, from agriculture,

automotive to courier shipping, and more. Many mobile robots typically need

navigation algorithms which are to move from one point to another point in

environment space that typically has obstacles, and the robot has to be able to avoid

obstacles while navigating to a goal [1]. Other things are the types of environments

such as outdoor, semi-outdoor, indoor, and semi-indoor [2]. Navigation can be

divided into geometric, topological, semantical, and perception models for

Open International Journal of Informatics (OIJI) Vol. 9 No. 2 (2021)

80

navigation [3]. Many researchers have proposed various solutions related to

navigation problems, such as mapping by scanning the surroundings to produce an

occupancy map represented by binary or probabilistic values for robot

understanding of obstacles in environment space [4]–[6]. But mapping requires

localization of the robot, which is to determine the position of the robot in a known

map which obtains by feature extraction using vision or time of flight sensors for

scanning the environment [7]. By determining robot localization, mapping the

unknown environment is possible, then a path to goal position can be realized.

Because the robot, while moving toward goal position, needs to know the

environment and currently using simultaneous localization and mapping (SLAM)

techniques for this problem which intends to do all related problems in multi-tasking

such as mapping the environment while measuring the robot location in the

environment [8]. But using SLAM came at a great cost which is computation time

[9] which means it needs a high-performance system to be used which is not suitable

when designing for certain applications, which is a real-time embedded system

since this method deploys a high-level controller and a low-level controller.

Realistic speaking, the real world is dynamic by nature and should be solved in

dynamic ways. Although the nature of dynamic for the simulated 2D environment

might be difficult but can still be simulated in a static environment. Because

limitations of using conventional controllers such as PID which are suitable for a

low-level controller and not a high-level controller. Currently, it is solved by

combining two different controllers, such as a high-level controller and a low-level

controller, where a high-level controller is fed to the low-level controller rather than

a controller with the ability to understand high-level of understanding the world

surrounding and execute low-level instruction to the actuator. Recently researchers

have been using machine learning to solve navigation problems such as supervised

learning and reinforcement learning [10]. The suitable type of learning would be

reinforcement learning since most of the algorithms are in the context of dynamic

programming. But training this system can take longer times, but it can learn in off-

policy, which can shorten the learning process since it learned from past random

actions. The aims of this work are to identify different types of simulation

environments, to develop a controller using a reinforcement learning algorithm, and,

lastly, to develop a neural network structure. The scopes of the works are to simulate

two dimensions of indoor space or environments, based on wheeled robot motion,

and multi-agents of a maximum of 5 depending on environment sizes.

2. Literature Review

This chapter will review the different existent methods that are currently

available, including the implementation which is relevant to this work. Firstly, to

find suitable algorithms and to develop a controller using RL algorithms. Secondly,

to design structures of neural networks using deep learning to meet the design

requirements. Next, to determine the environment settings to be used in the

deployment after training. And lastly, to evaluate the designed model.

Open International Journal of Informatics (OIJI) Vol. 9 No. 2 (2021)

81

2.1. The Reinforcement Learning Algorithm

The algorithm is chosen based on whether the robot in the environment has inputs

spaces in continuous or discrete and outputs, which are the measurement states in

continuous or discrete. This work considers robot dynamics and, therefore, will

have continuous action (the inputs) and continuous observation state (the outputs)

for the environment. There are several candidates such as Deep Q Network (DQN)

[11], Asynchronous Advantage Actor-Critic (A3C) [12], Asynchronous Actor-

critic (A2C) [13], Model-based approach [14]–[18], Deep Deterministic Policy

Gradient (DDPG) [19]. Based on these papers, it is shown that the model-based

approach has low adaptation on a dynamic environment and, therefore, will not be

considered. Using DQN might work for the project, but it came with limitations

since it is the extended version of Q-learning using the neural network as a function

approximator of Q-learning, which are continuous actions that need to be

discretized actions might not be a good idea. Next are the A2C and A3C since they

were somewhat similar. These algorithms can be used on continuous action, and

continuous states which involve many environments (using multi-core CPU or

synchronous) in A2C and used independent networks on the parallel environment

to tune the global network weights parameters where A3C used asynchronous ways

means that rather than waiting for all parallel environment to be executed the action,

it will execute without waiting for all parallel environment to tune the global

network. This is somewhat similar to a centralized system where the main core

control all the agents. Here, the agents are referred to as controllers which use deep

learning where the robots refer to robots (or plants in the control system) inside the

environment, and the agents will control the robots by sending actions such as

arbitraries movement or continuous action such as voltage or position (for example

closed-loop position controller) to the robots and therefore the agents will act as

controller.

2.2. The Neural Network Structure

There are different types of artificial neural networks (ANN), such as multilayer

perceptron (MLP), convolution neural network (CNN), recurrent neural network

(RNN), and others [20][21]. Many AI researchers suggest using long short-term

memory (LSTM), which is under RNN class means it is a type of neural that can

store memories and these memories will change based on receiving inputs data [22].

Since humans used memories when to navigate are probably why several

researchers suggest using LSTM, but using this network alone might not be a great

idea since the structure of inputs and outputs need to be compatible such as the

dimensions of action and measurable states of the environment [23]–[26]. Based

on previous works, basic layers of the network can be constructed, such as input

layer, LSTM layers, and output layers using dense layer. For Q-network, the dense

layers are sufficient for this project. DDPG algorithm required 4 networks which

are policy network, Q-network, target policy network, and target Q-network. The

target network is an exact structure with main networks, but the weights of the

network are updated using a different algorithm, as shown in the DDPG algorithm.

The network can be constructed to form a reactive controller system [27] which

should be the basis of a simple navigation problem.

Open International Journal of Informatics (OIJI) Vol. 9 No. 2 (2021)

82

2.3. The Environment

Choosing the environment for the agents to learn behaviors such as obstacles

avoidance (dynamic and static), goal-seeking, and motion behaviors (linear and

rotation movement) needs to be considered. Since the developed controller model

required evaluation, therefore, needs environments for training while others for

testing after training sessions are over. OpenAI Gym is a great tool, and many

researchers have been using OpenAI Gym especially for developing RL algorithms

for training and evaluation [22]. Several environments are used with the purpose

of training and then testing on a few unseen environments to determine performance

and reliability. The criteria for choosing must be based on the requirement needed,

such as the ability to move based on input action to specific location serve as

location point and also came with obstacles such as a walls-like maze. Several

environments can be used, but the most suitable is the gym-miniworld [28]

developed by a third-party using OpenAI Gym application programming interface

(API), and although the design is simple, it can be customized to include others that

are lacking, such as robot dynamics. These also have many different environments

and can be used in this project to achieve the objectives and also within the scopes.

Although the observable states are fully observable to be customized to our needs

to works similar to partially observable arrays of ranging sensors.

2.4. The Evaluation of the Model

During the training, it is important to know whether the model is training properly

by looking at the increasing cumulative or average reward until it converges. When

converge is occurred, and there is no increasing reward, and the agent is not able to

reach specifications (not reached accuracy or loss), and this can be solved by

increasing the hidden layers of the network. To evaluate the model for navigation is

dependent on the success rate to reach the goal location. Quite similar to supervised

learning, where the accuracy or loss to predict assigned labels can determine the

performance of the model, but for application for navigation, especially for goal-

seeking behavior, it can be determined by the total reached goal location with the

total attempt. Based on other works [refs.], the accuracy can be reached somewhere

80% to 98%, but 95% accuracy is acceptable since humans can reach around 95%

for different tasks, and it should be sufficient for our project purposes.

3. Research Methodology

The methods are chosen based on the literature review. Although DDPG was

developed for a single agent but using it for multi-agents can still work as seen in

A3C algorithms implementation. This section describes the details of the proposed

method, diagram concerning the project, and resources to be used.

3.1. The Proposed Method

Below is the proposed method, which is the DDPG with multi-agents using a

centralized global network and several independent networks for each agent. The

DDPG algorithms required 4 networks, namely policy or actor-network, critic

network, and target networks for actor and critic. The outputs of the actor-network

Open International Journal of Informatics (OIJI) Vol. 9 No. 2 (2021)

83

will predict the next action for the robot, as shown in the block diagram. The

environment and the agent neural networks need to be initialized first by predefined

parameters such as training hyperparameters, neural networks structures, weights

parameters, and others. After initializing the parameters, read the initial states and

feed them into the model to obtain the action. Execute the action to obtain the next

states and also how much the reward to the store in the memory. Then sample from

memory to compute the Bellman equation to compute the loss function of Q-

network that can adjust the weights using backpropagation. Then the DDPG

algorithm can be executed with some modifications for multi-agents. In general,

the data to be collected on various agents does not make the distinction on different

agents, including its does not cooperative and competitive since each agent will

have its goal location. Therefore, the data will be more diverse using a single

environment, but many agents and the agents can also learn to perceive other agents

as moving obstacles. Table 1 shows the proposed DDPG with a multi-agent

algorithm.

The proposed robot-environment interface is shown in Figure 1 below to

illustrate how different components operate as a single system to train or evaluate.

The agent itself is a MIMO controller with states as input and action as output. For

simplicity, the outputs model actions are linear movement and rotation movement

such as move forward or backward, 𝑀𝐹𝐵 and rotate right or left, 𝑅𝑅𝐿. The inputs are

the positions in x-axis coordinate, y-axis coordinate, and z-axis orientation

(𝑃𝑋 , 𝑃𝑌, 𝑂𝑧). Other inputs are robot velocities such as linear velocity and angular

velocity (𝑉, Ω). The last pieces of feedback inputs are the array of obstacles

distances from robot positions (𝐷1, 𝐷2, 𝐷3, 𝐷4, 𝐷5). Although these are partially

observing states, it should be enough to navigate to the goal while avoiding the

obstacles similar to a reactive system.

Table 1: The DDPG with a multi-agent algorithm

DDPG with multi-agents

Initialize the environment

Randomly Initialise critic-network Q 𝑠, 𝑎|𝜃𝑄 , actor-network 𝜇 𝑠|𝜃𝜇 with weights 𝜃𝑄 and 𝜃𝜇 .

Initialize target networks Q′ and 𝜇′ with weights 𝜃𝑄′ ← 𝜃𝑄 and 𝜃𝜇′ ← 𝜃𝜇

Initialize replay buffer, 𝑅

For episode=1, M do

Initialize multi-agents exploration

Receive initial observation, 𝑠𝑖
For time=1, T do

Select action (Run policy network) for every agent

Store for every agent 𝑠𝑖 , 𝑎𝑖 , 𝑟𝑖 , 𝑠𝑖+1 in 𝑅

Sample a random minibatch of 𝑁 transitions from 𝑅

Set 𝑦𝑖 = 𝑟𝑖 + 𝛾𝑄′ 𝑠𝑖+1, 𝜇′ 𝑠𝑖+1|𝜃𝜇 |𝜃𝑄

Update critic by minimizing the loss, 𝐿 =
1

𝑁
 𝑦𝑖 − 𝑄 𝑠𝑖 , 𝑎𝑖|𝜃

𝑄
2

𝑖

Update policy using sampled policy gradient

𝛻𝜃𝜇 ≈
1

𝑁
 𝛻𝑎

𝑖
𝑄 𝑠𝑖 , 𝑎𝑖|𝜃

𝑄 𝛻𝜃𝜇 𝜇 𝑠𝑖 |𝜃
𝜇

Update the target networks

𝜃𝑄′ ← 𝜏𝜃𝑄 + 1 − 𝜏 𝜃𝑄′

𝜃𝜇′ ← 𝜏𝜃𝜇 + 1 − 𝜏 𝜃𝜇′
End for

End for

Open International Journal of Informatics (OIJI) Vol. 9 No. 2 (2021)

84

The structure of the network for the actor is shown in Figure 2 below. The LSTM

cells which form hidden layers will have the same size as the input layer. More

LSTM and dense layers will add if the performance of behavior does not meet the

requirements. The dense layers can serve to process possible actions, which then

feed into the environment. This structure takes inspiration from the feedback system

and reactive system, which does not involve fully observed states.

3.2. Tools and Platform

The tools that were used are Anaconda [29] which is one of python distribution

mainly used for programming the algorithm in python. Other tools such as OpenAI

gym-miniworld for the environment that have different mazes and sizes pick to train

or evaluate the model. The model itself used TensorFlow python API and was

integrated as a part of the whole algorithm.

4. Preliminary Results

Figure 1. Block diagram of the robot-environment interface

Figure 2. The Model Architecture

Open International Journal of Informatics (OIJI) Vol. 9 No. 2 (2021)

85

The results were carried out according to the objectives concerning the

environment for robot navigation which are suitable such as the complexity of the

mazes and sizes. The neural network architecture can also be easily designed

according to the shape we want. The results are shown below in terms of

environment and neural networks that can integrate into the algorithm.

4.1. The Environments

The environment to access reliability such as robot movement toward the goal.

When it reaches the goal, it will reset and restart the new robot position and goal

location. The dynamics of the robot are simple such as moving forward, backward,

and rotating right, left. The fully observable top-down/overhead view is available

to be used as measurable states but only needs partially observable for the proposed

project. Other states were also available such as position in x-coordinate, y-

coordinate, and z-coordinate. The angle or the orientation is also included, but other

states that are lacking are robot velocities and obstacles displacement, but these can

measure from image top view of the environment. These environments, as shown

in Figure 3, should have enough space to deploy multi-agents.

4.2. The Agents Models

The structure ANN such as LSTM and MLP or dense layers as the proposed

method, there are two ways to do and below is achieved using functional API. These

will form a basis for the controller as more layers will be added for future works.

Figures 4 and 5 are the model summary to be used for the proposed project. The

input layers are the signal from measured states and feedforward to the LSTM layer.

The LSTM will have the same cells as observed states for simplicity and

feedforward to dense layer. The dense layer also has the same neuron dimension as

LSTM. Then lastly, to reduce the last dense layer to two for the actions.

Figure 3. Training (left) and Testing (right) Environments

Open International Journal of Informatics (OIJI) Vol. 9 No. 2 (2021)

86

The critic network, which is Q-network shown in Figure 5, will have a much

bigger size than the actor-network or controller network. The output from the actor

and the critic network is important for the DDPG algorithm. There are two inputs

which are states and actions, which then feed into separate dense layers. These two

dense layers are then fed into concatenate layer, which links them together as a

single dimension output to feed into the dense layer and reduce the output dimension

to one. This out the value called Q-value, which is related to Q-learning. The target

networks will have the same structure as the actor and critic networks.

4.3. The Experience Replay Buffer

Figure 4. The Policy Network of The Model

Figure 5. The Actor Network of The Model

Open International Journal of Informatics (OIJI) Vol. 9 No. 2 (2021)

87

Every action simulated in the environment is stored in a replay buffer, as shown

in Figure 6. In terms of progress, this part is finished and linked together with the

neural network model and the environment. The function of this class will simplify

the programming when linked to the main algorithm. The buffer store known as

Markov process decision and the minibatch from this data will be used in the policy

gradient equation to find the change of weights to be used for backpropagation.

4.4. Discussion

The controller using ANN has been successfully constructed using TensorFlow

and can be designed as need it. Since the model uses functional API rather than

sequential API, it was easier to construct in the code, especially for the critic

network, since it is two networks of two inputs of actions and states and merge them

as one-dimension array values.

The environment overall works as expected that the robot can move inside the

environment space using a simple command such as moving forward, backward,

rotating right, left. The lacking feature in the environment will be part of future

works. Every movement or time step is observed by calling function in OpenAI

Gym. The outputs values of the states will be used to store in replay buffer. The

reward function is simple, but in order to develop certain behaviors of the robot, the

reward function will be formulated in future works. The environment will operate

in top view, which gives a 2D view that can be regarded as a 2D environment.

The main algorithm can be executed in future works by linking them together

since most of the individual part has almost been completed. This can be used as

part of future works to be planned the experiment. There is currently a lack of an

environment that can be used to simulate different types of mobile robots, such as a

multi-wheeled robot, which is the reason why a lot of works need to be done on a

simulated wheeled robot as a part of the project.

Figure 6. The Experience Replay Buffer

Open International Journal of Informatics (OIJI) Vol. 9 No. 2 (2021)

88

5. Conclusions and Future Works

The outcomes of this research are to develop the controller, the environment, the

DDPG algorithm with multi-agents using various API according to the proposed

method that has been successfully carried out. To design a controller in conventional

ways such as PID controller has limitations, but those limitations can be overcome

using an intelligent system such as deep learning and will play a crucial role in

future applications in dealing with a complex system to the controller.

For future works, the proposed algorithm will be linked with the

environment to experiment. After that, train the developed model and observe

the robot behavior. If robot behaviors do not react as expected or do not meet

the requirements, then some adjustments are needed, such as increasing the

size of networks or modifying the reward function. After all the conditions are

good, then the evaluation will be carried out in an unseen environment to be

able to determine the performance, such as the accuracy to reach the goal

location.

Acknowledgments

I would like to thank everyone who was involved in my academic terms to

complete this work. I also want to thank my parent, who supported me in pursuing

my passion in the field of robotics. Lastly, my supervisor for the advice and

guidance throughout the research process. Thank you for all your support.

References

[1] F. Gul, W. Rahiman, and S. S. Nazli Alhady, “A comprehensive study for robot navigation techniques,” Cogent

Engineering, vol. 6, no. 1. 2019.

[2] J. Yan, A. A. Diakité, and S. Zlatanova, “A generic space definition framework to support seamless indoor/outdoor
navigation systems,” Trans. GIS, vol. 23, no. 6, pp. 1273–1295, 2019.

[3] R. Barber, J. Crespo, C. Gómez, A. C. Hernámdez, and M. Galli, “Mobile Robot Navigation in Indoor

Environments: Geometric, Topological, and Semantic Navigation,” in Applications of Mobile Robots, IntechOpen,
2019.

[4] S. Sattaratnamai, N. Niparnan, and A. Sudsang, “Urban Navigation System with Multiple Sub-Maps and Multiple

Sub-Navigators,” IEEE Access, vol. 8, pp. 99974–99989, 2020.
[5] A. A. Ravankar, A. Ravankar, T. Emaru, and Y. Kobayashi, “A hybrid topological mapping and navigation method

for large area robot mapping,” 2017 56th Annu. Conf. Soc. Instrum. Control Eng. Japan, SICE 2017, vol. 2017-

Novem, pp. 1104–1107, 2017.
[6] D. De Gregorio and L. Di Stefano, “SkiMap: An efficient mapping framework for robot navigation,” in Proceedings

- IEEE International Conference on Robotics and Automation, 2017, pp. 2569–2576.

[7] X. Chen, S. Wang, B. Zhang, and L. Luo, “Multi-feature fusion tree trunk detection and orchard mobile robot
localization using camera/ultrasonic sensors,” Comput. Electron. Agric., vol. 147, pp. 91–108, 2018.

[8] G. Bresson, Z. Alsayed, L. Yu, and S. Glaser, “Simultaneous Localization and Mapping: A Survey of Current
Trends in Autonomous Driving,” IEEE Trans. Intell. Veh., vol. 2, no. 3, pp. 194–220, 2017.

[9] J. Aulinas, Y. Petillot, J. Salvi, and X. Lladó, “The SLAM problem: A survey,” Front. Artif. Intell. Appl., vol. 184,

no. 1, pp. 363–371, 2008.
[10] S. Aggarwal, K. Sharma, and M. Priyadarshini, “Robot navigation: Review of techniques and research challenges,”

in Proceedings of the 10th INDIACom; 2016 3rd International Conference on Computing for Sustainable Global

Development, INDIACom 2016, 2016, pp. 3660–3665.
[11] V. Mnih et al., “Playing Atari with Deep Reinforcement Learning.”

[12] V. Mnih et al., “Asynchronous Methods for Deep Reinforcement Learning,” 33rd Int. Conf. Mach. Learn. ICML

2016, vol. 4, pp. 2850–2869, Feb. 2016.
[13] Y. Wu, E. Mansimov, S. Liao, R. Grosse, and J. Ba, “Scalable trust-region method for deep reinforcement learning

using Kronecker-factored approximation,” Adv. Neural Inf. Process. Syst., vol. 2017-Decem, pp. 5280–5289, Aug.

2017.

Open International Journal of Informatics (OIJI) Vol. 9 No. 2 (2021)

89

[14] M. Gheisarnejad and M. H. Khooban, “An Intelligent Non-Integer PID Controller-Based Deep Reinforcement

Learning: Implementation and Experimental Results,” IEEE Trans. Ind. Electron., vol. 68, no. 4, pp. 3609–3618,

2021.
[15] N. O. Lambert, D. S. Drew, J. Yaconelli, S. Levine, R. Calandra, and K. S. J. Pister, “Low-Level Control of a

Quadrotor with Deep Model-Based Reinforcement Learning,” IEEE Robot. Autom. Lett., vol. 4, no. 4, pp. 4224–

4230, 2019.
[16] T. G. Thuruthel, E. Falotico, S. S. Sant’anna, F. Renda, C. Laschi, and T. George Thuruthel, “Model-Based

Reinforcement Learning for Closed-Loop Dynamic Control of Soft Robotic Manipulators Soft Multi-body
Dynamics View project Model Based Reinforcement Learning for Closed Loop Dynamic Control of Soft Robotic

Manipulators,” Ieeexplore.Ieee.Org.

[17] N. O. Lambert, C. B. Schindler, D. S. Drew, and K. S. J. Pister, “Nonholonomic Yaw Control of an Underactuated
Flying Robot with Model-Based Reinforcement Learning,” IEEE Robot. Autom. Lett., vol. 6, no. 2, pp. 455–461,

2021.

[18] T. M. Moerland, J. Broekens, and C. M. Jonker, “Model-based Reinforcement Learning: A Survey.”
[19] T. P. Lillicrap et al., “Continuous control with deep reinforcement learning,” in 4th International Conference on

Learning Representations, ICLR 2016 - Conference Track Proceedings, 2016.

[20] O. I. Abiodun, A. Jantan, A. E. Omolara, K. V. Dada, N. A. E. Mohamed, and H. Arshad, “State-of-the-art in
artificial neural network applications: A survey,” Heliyon, vol. 4, no. 11, p. e00938, Nov. 2018.

[21] A.-N. Sharkawy, “Principle of Neural Network and Its Main Types: Review,” J. Adv. Appl. Comput. Math., vol. 7,

no. 1, pp. 8–19, Aug. 2020.
[22] K. Smagulova and A. P. James, “A survey on LSTM memristive neural network architectures and applications,”

Eur. Phys. J. Spec. Top. 2019 22810, vol. 228, no. 10, pp. 2313–2324, Oct. 2019.

[23] Z. Xie, G. Berseth, P. Clary, J. Hurst, and M. Van De Panne, “Feedback Control for Cassie with Deep
Reinforcement Learning,” IEEE Int. Conf. Intell. Robot. Syst., pp. 1241–1246, 2018.

[24] W. Zhang, N. Liu, and Y. Zhang, “Learn to Navigate Maplessly with Varied LiDAR Configurations: A Support

Point-Based Approach,” IEEE Robot. Autom. Lett., vol. 6, no. 2, pp. 1918–1925, 2021.
[25] L. Tai, G. Paolo, and M. Liu, “Virtual-to-real deep reinforcement learning: Continuous control of mobile robots for

mapless navigation,” IEEE Int. Conf. Intell. Robot. Syst., vol. 2017-Septe, pp. 31–36, 2017.

[26] S. Bohez, T. Verbelen, E. De Coninck, B. Vankeirsbilck, P. Simoens, and B. Dhoedt, “Sensor fusion for robot
control through deep reinforcement learning,” IEEE Int. Conf. Intell. Robot. Syst., vol. 2017-Septe, no. 1, pp. 2365–

2370, 2017.

[27] A. Pore and G. Aragon-Camarasa, “On Simple Reactive Neural Networks for Behaviour-Based Reinforcement
Learning,” Proc. - IEEE Int. Conf. Robot. Autom., vol. 9781728173, no. January, pp. 7477–7483, 2020.

[28] M. Chevalier-Boisvert, “gym-miniworld environment for OpenAI Gym,” GitHub, 2018. [Online]. Available:

https://github.com/maximecb/gym-miniworld. [Accessed: 30-Jun-2021].
[29] “Anaconda | Individual Edition.” [Online]. Available: https://www.anaconda.com/products/individual. [Accessed:

11-Jun-2021].

