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Abstract 

Anomaly detection (AD) is the detection of patterns in data under expected behavior. In an industrial 

environment, any equipment or system that breaks down will affect productivity. Therefore, Tiny 

Machine Learning (TinyML) is introduced to address this problem. TinyML can undergo anomaly 

detection to detect if any equipment did not act within expected behavior and notify the user if an 

anomaly detection has been detected. Anomaly detection is an unsupervised learning algorithm. It 

aims to identify the patterns in data that do not follow the expected behavior. By using TensorFlow 

Lite Micro, the TinyML can be trained to undergo anomaly detection. However, the machine 

learning algorithm had to be exported from TensorFlow, then TensorFlow Lite, and finally 

TensorFlow Lite Micro in order to upload the machine learning algorithm into TinyML. This paper 

highlights the state of the art of the current works on TinyML. Some suggestions on the research 

direction are also introduced for potential future endeavors. 
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1. Introduction 

Reliability is the main attribute for safe operation in any modern technological 

system. Reliability analysis focuses on uncertainty in failure incidences and the 

aftereffects. The aim is to shield the system beyond the uncertainties of its 

accidental situations [1]. In recent years, reliability engineering has been well-

established into a multi-disciplinary scientific discipline that seeks to offer an 

ensemble of formal methods to inspect the unclear boundaries between system 

operation and failure. Furthermore, E. Zio [1] also recorded the main questions 

focusing on reliability engineering. These questions are the main causes of the 

system’s failure, the procedure of measuring and testing the reliability in design, 

operation, and management, the ways to maintain the system’s reliability such as 

maintenance, fault diagnosis, and prognosis, and the techniques to develop the 

reliable systems. Engineering maintenance and prognostics play a critical role in 

modern industries such as aerospace, locomotive, manufacturing, and so forth. The 

usual engineering maintenance approach is to maintain the functionality of the 

equipment or system, such as preventive maintenance or scheduled maintenance. 

However, these approaches could not fulfil the growing demand of economic 

efficiency, reliability, and safety [2]. Therefore, advanced condition-based 
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maintenance (CBM) has been introduced [3]. CBM is also known as prognostic and 

health management (PHM) [4]. PHM is a method that enables the assessment of the 

reliability of the equipment, a system under its actual application conditions. The 

objectives of PHM are improving reliability, enhancing performance ability, and 

reducing the maintenance cost of the equipment. The remaining useful life (RUL) 

is the remaining lifetime length of the equipment to operate before complete failure. 

There are several approaches in RUL, such as model-based approaches and data-

driven approaches. Model-based approaches build a physical failure model to 

deduct an accurate RUL, while data-driven approaches build a less complex model 

such as a degradation model with historical sensor data.  

The development of Machine learning (ML) allows the insight of the world by 

enabling inference of information and knowledge from a tremendous amount of data 

that are normally unseen [5]. Hence, ML algorithms can be used to predict future 

values of phenomena using a generated model and abstract the understanding of 

underlying phenomena in the form of a model. ML is a computational algorithm 

that converts empirical data into usable models. Besides that, ML can solve the 

challenges in reliability engineering and safety analysis by discovering more 

survival data, accurate insights from accident datasets, or degradation[6]. There are 

several areas that utilize ML, such as fraud detection, bioinformatics, market and 

business prediction, and speech recognition [7]. Thus, ML enables the optimization 

of the system designs by upgrading the efficiency of the systems and the designing 

of the machines [8]. Furthermore, ML can be categorized into supervised learning, 

semi-supervised learning, and unsupervised learning, as shown in Figure 1.  

Cloud machine learning is the first approach to machine learning and following by 

mobile machine learning and now tiny machine learning (TinyML). TinyML is the 

deployment or integration of ML in microcontroller Units (MCUs). MCUs are 

embedded devices that consist of a core processing unit of a small frugal object [5]. 

TinyML is an innovative approach that aims to bring ML inference to ultra-low-

power devices such as under one milliwatt [9]. Moreover, the efficiency of TinyML 

 

Figure 1. Categories of Machine Learning 
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enables always-on applications, battery-powered, that enable real-time processing 

and collection of data. Generally, the MCUs had limited memory and onboard 

compute horsepower. Therefore, the TinyML models should be small enough to fit 

in the MCUs. However, these tight constraints will limit the number of layers and 

the size of the input. 

 

2. Literature Review  

 
2.1. Supervised Learning 

The equation in Figure 2 represents the ingredient of machine learning. The 

unknown model function in Figure 2, f(x) is the information that the feature vector 

X provides about the label Y. In general, machine learning is the estimation of 

functions that can map the input to obtain the output. Supervised learning means the 

learning process is done using labeled data. There are two sub-categories of 

supervised learning, i.e., regression and classification. The regression goal is to 

predict a continuous value output, while the classification goal is to predict a 

discrete value output. Linear regression and support vector regression (SVR) are 

examples of regression machine learning algorithms. Some of the recent 

development in neural networks are deep neural network (DNN) models, recurrent 

neural networks (RNN), and convolutional neural networks (CNN).  

Classification aims to predict a discrete value output. Classification problem 

involves an output with one of two or more classes, such as email identification of 

spam or not spam or multi-class output. However, the number of classes is known 

in advance and constrained [10]. Classification machine learning algorithm includes 

k-nearest neighbor (KNN), random forest (RF), and support vector machine (SVM). 

 

2.2. Unsupervised Learning 

Unlike supervised learning, the unsupervised learning process is via unlabeled 

data and aims to explore the feature space and find patterns in the data set. 

Unsupervised learning is not focusing on predicting the output since there is no 

output variable. There are two sub-categories of unsupervised learning, i.e., 

clustering and anomaly detection. Clustering is used to discover the data analysis to 

find groupings or hidden patterns in the data. One of the famous methods in 

clustering is the k-means clustering algorithm in image segmentation [11]. K-means 

 

Figure 2. Ingredient of Machine Learning [6] 
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clustering algorithm classifies the classes into k numbers. Then it calculates the k 

centroid and takes the nearest centroid to the cluster. K-means clustering algorithm 

is an iterative algorithm that lessens the sum of the distance from each object to its 

cluster centroid.  

Besides that, the other sub-category of unsupervised learning is anomaly 

detection. Anomaly detection aims to identify the patterns in data that do not follow 

the expected behavior [12]. Many applications utilize anomaly detection such as 

cyber-intrusion detection, sensor networks, image processing, textual anomaly 

detection, industrial damage detection, medical anomaly detection, and fraud 

detection. Besides that, the anomaly detection algorithm consists of self-organizing 

maps (SOM) and K-mean.  SOM approaches are based on neural networks. SOM 

is used for classifying the data according to the similarity between the data. Besides 

that, SOM allows about reduction of multidimensional space into two-dimensional 

space [13].  SOM initialized by setting up a regular grid can be either rectangular or 

hexagonal arrangement. Furthermore, each unit contains a distinct codebook vector. 

The weighted average codebook vector will replace the winning unit after each 

training. The winning unit is the unit with the highest similarity to the presented 

object [14]. Nevertheless, not only the winning unit will be updated, but all units in 

the neighborhood will be updated as well. Therefore, the size of the neighborhood 

also gradually decreases during training. 

 

2.3. Semi-supervised Learning 

Semi-supervised learning algorithms are applied in remaining useful lifetime 

(RUL), identification, and fault detection, which are essential in maintenance 

planning [6]. Semi-supervised is the mixture of both supervised learning and 

unsupervised learning. Semi-supervised learning process using both labeled and 

unlabeled data. Like supervised learning, the sub-categories of semi-supervised 

learning are semi-supervised regression and classification. Semi-supervised 

regression (SSR) indicates where the output-valued is real-valued [15]. Semi-

supervised classification (SSC) refers to the situation where output is discrete and 

utilizes a little labeled data and numerous unlabeled data [16]. One of the famous 

semi-supervised learning is the graph-based model (GBM). The graph structure in 

GBM can effectively encode the intrinsic physical properties of the complex social 

relationship in practice [17]. In GBM, a graph was constructed with nodes and 

edges. Nodes are specified with unlabelled and labelled samples. Furthermore, the 

edges determine the similarities among the labelled and unlabelled samples [18]. 

Each sample is represented by a vertex in the weighted graph that calculates the 

similarity between samples. 

 

2.4. TinyML 

Tiny Machine Learning (TinyML) is an innovative approach that involves 

embedded systems and machine learning. TinyML aims to bring ML inference to 

ultra-low-power devices such as under one milliwatt. The advantages of introducing 

TinyML into MCUs are energy efficiency, low cost, system reliability, and data 

security. MCUs show the ability to reduce energy consumption even working at a 

maximum workload level and are powered by batteries. Thus, this permits the 

MCUs to deploy anywhere without the concern of power supply issues. Besides 
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that, the off-the-shelf MCUs price is inexpensive, and this will allow wide 

deployment of TinyML. Furthermore, TinyML ensures good system reliability and 

data security since machine learning is not via cloud computing. Thus, this enables 

all the data on-premises will be confined at the MCUs themselves.  

There is a wide selection of machine learning compression algorithms, including 

model pruning, parameter quantization, knowledge distillation, layer 

decomposition, and binarization. Model reduction is one of the main challenges in 

implementing machine learning into microcontrollers. The objective of model 

reduction is to reduce the size of the neural and fit into the tight constraints of 

microcontrollers.  

 

2.5. Pruning 

Works by [19] presented a model compression that includes several techniques, 

including pruning, quantization, and Huffman encoding. The operations are applied 

successively on the neural network model, resulting in reduced model size [20]. The 

objective of model pruning is to reduce the number of connections in the neural 

network model by pruning non-informative weights based on some loss function. 

Besides that, a study by [21] reported an example of the pruning process. The author 

trains the network to identify which connections are important, prune redundant 

connections, and retrain the network to fine-tune the weights of remaining 

connections. Furthermore, Y. Le Chun et al. [22] presented a weight pruning 

technique called optimal brain damage (OBD). OBD had improved the network 

speed significantly while reducing the number of parameters. It is noticed that there 

is a slight increase in recognition accuracy. On the other hand, H. Hu et al. [23] 

introduced network trimming techniques that prune the unimportant zero 

activations neurons. The proposed average percentage of zeros (APoZ) is used for 

measuring the percentage of zero activations of a neuron after ReLU mapping. The 

zero activation neurons can be identified easily via APoZ regardless of the weights 

of connections. L.Theis [24] had presented a simple yet greedy pruning known as 

Fisher pruning. The author utilized the knowledge distillation [25] and Fisher 

pruning to obtain runtime-efficient architecture for saliency prediction. The speedup 

is 10x for the same area under the curve (AUC) performance as a state-of-the-art 

network on the CAT2000 dataset. The author built on the model DeepGaze II [26], 

the backbone of DeepGaze II is formed by VGG-19 [27], a deep neural network 

pre-trained for object recognition. Some modifications are made in DeepGaze II. 

The Molchanov et al. [28] pruning method was applied for gaze prediction. It was 

noticed that the regularization of the number of FLOPs gives better results. The 

number of parameters can be further decreasing via pruning: greedy removal of 

redundant parameters or feature maps known as Fisher pruning. Fisher pruning aims 

to remove feature maps or parameters which contribute little to the overall 

performance of the model. The research paper [20] proposed a deep compression 

which consist of three stage pipeline including pruning, trained quantization and 

Huffman coding. These process enables the reduction of storage requirement of 

neural network by 35x to 49x without affecting the accuracy. The author approaches 

in pruning the network via learning only the important connections. Then the 

weights are quantized to enforce weight sharing and apply Huffman coding. The 

research paper aimed to reduce the storage and energy required to run inference on 
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such networks in order to meet the tight constraints of mobile devices. The total size 

of AlexNet decreased from 240MB to 6.9MB. This enables the implementation of 

AlexNet into on-chip SRAM. 

 

2.6. Quantization 

A network quantization process is where the network size is reduced further by 

reducing the number of bits needed to represent each weight. The quantization 

process involves deciding the number of bits needed to represent weights based on 

an observed [min, max] range of the weight values. There are other methods to 

quantize the weight efficiently, such as linear quantization, non-linear (log-based) 

quantization, and k-means clustering, to even single bit quantization for binary-

weight neural networks. 

In the research paper [29], the authors proposed a quantization scheme that allows 

inference to be carried out using integer-only arithmetic. This approach is more 

efficient than floating-point inference on widely available integer-only hardware. 

The main contribution of the paper is the introduction of a quantization scheme, 

quantized inference framework, quantized training framework, and implementation 

of the frameworks. Quantization scheme is the quantization of both weights and 

activations as 8-bit integers and a few parameters as 32-bit integers. The 

quantization scheme in the paper was implemented using integer-only arithmetic 

during inference and floating-point arithmetic during training. The quantization 

scheme only uses a single set of quantization parameters for all values within each 

activations array within each weights array. The author had applied quantized 

training to ResNets [30] and InceptionV3 [31] on the ImageNet dataset. Integer-

only quantization outperforms FGQ [32], which utilizes 2 bits for weight 

quantization. However, the author’s integer-only quantization outperforms INQ 

[33] in run-time improvements. The author had proposed a quantization scheme that 

relies only on integer arithmetic to approximate the floating-point computations in 

a neural network. Training that simulates the effect of quantization assist in the 

restoration of model accuracy to a near-identical level as the original. The author 

also evaluated quantization in the context of mobile real-time object detection, 

comparing the performance of quantized 8-bit float models of Mobile Net SSD [33, 

34] on the COCO dataset [36]. All the regular convolutions in the SSD prediction 

layers have been replaced with separable convolutions. This caused the MobileNets 

to become more computationally efficient.  

 

2.7. Knowledge Distillation 

G. Hinton et al. [25] had further developed the model compression proposed in 

[37] via a different compression technique, i.e., knowledge distillation. Knowledge 

distillation is an alternative way to transfer knowledge from a large model into a 

smaller form for ease of deployment. Models are advised to train to generalize well. 

However, G. Hinton et al. [25] approaches to enable the training of small models to 

generalize in the same way as the large model. The generalization of a cumbersome 

model to a small model is through class probabilities. These class probabilities are 

generated by the cumbersome model as “soft targets” for the small model training. 
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The lack of example in the transfer set that is used in training the distilled model 

will not affect the MNIST distillation works. The improvement of a single big net 

is caused by learning many specialist nets that can discriminate between classes in 

a highly confusable cluster. 

 

2.8. Layer Decomposition 

Single Value Decomposition (SVD) method [38, 39, 40], decomposes a weight 

matrix W(𝑚×𝑛) into three matrices namely U(𝑚×𝑚) , ∑(𝑚×𝑛) , and 𝑉(𝑛×𝑛)
𝑇 . The 

dimension of the matrices can be reduced by ignoring relatively small singular 

values. In [38], the author had shown how the SVD can be used to compute reliably 

a number of the basic geometric objects of linear algebra. SVD plays an important 

role in analyzing square, invertible matrices its full power is realized in the analysis 

of nonsquare, possibly rank-deficient matrices which arise. Besides that, in [39], 

SVD was applied to the weight matrices in DNN and restructured the model based 

on the inherent sparseness of the original matrices. DNN Hidden-Markov-Model 

(CD-DNN-HMM) [41, 42], the conventional Gaussian Mixture Model (GMM) is 

replaced by a DNN to evaluate the senone log-likelihood. The implemented CD-

DNN-HMMS are initialized from traditional CD-GMM-HMMs. It is crucial for 

rapid computation and small memory usage in order to obtain a real-time execution. 

By applying SVD on the weight matrices in DNN, two small matrices will be 

obtained. There will be no accuracy loss if the restructuring of the DNN model is 

done via modest parameter reduction. However, if the number of parameters of 

DNN is greatly reduced, the model can undergo fine-tuning with a new structure to 

obtain the original accuracy.  

In [40], the author had proposed a fast training methodology for learning of Deep 

Neural Networks (DNNs) via SVD. Besides that, the author utilized unconventional 

Back Propagation (BP) algorithm to train the models restructured by SVD, which 

reduces the time complexity than the conventional BP algorithm. Furthermore, the 

research paper [43] introduced a software accelerator for deep learning models to 

run on mobile hardware, DeepX. DeepX strengthen the advantages via two 

inference-time resource control algorithm such as Runtime Later Compression 

(RLC) and Deep Architecture Decomposition (DAD). Extension of model 

compression principles in the inference phase can be improved by introducing RLC. 

Since RLC provides runtime control of memory and computation consumed. The 

RLC is designed to address significant obstacles. These obstacles include low 

overhead operation suitable for runtime use, the requirement of retraining, and 

testing are needed for local test datasets to assess the impact of model architecture 

changes. A decomposition plan is created, and the unit block of the architecture is 

identified by DAD. This decomposition plan can maximize resource utilization and 

achieve user performance goals. The challenges overcome by DAD include 

potentially prohibitive search space, inference and considering hardware 

heterogeneity, decomposition and recomposition overhead. Combination of both 

RLC and DAD enables the DeepX to performs inference across a standard deep 

learning model with an innovative use of resources.  
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2.9. Binarization 

Binarization is a 1-bit quantization where data only have two possible values, 

either -1 or +1 [44]. Binarized Neural Networks (BNNs) are deep neural networks 

that were introduced by Courbariaux et al. [45], which utilizes binary values instead 

of full precision values in activations and weights [44]. Since BNNs use binary 

values, thus the computation execution can be done via bitwise operations, which 

reduce the execution time. Existing methodologies in BNNs such as optimizer, 

gradient, and weight clipping, batch normalization and, pooling and learning rate. 

BinaryConnect uses ADAM [46] for CIFAR-10 and vanilla SGD for MNIST. 

DoReFa-Net and XNOR-Net use ADAM in their experiments, and ABC-Net [47] 

uses SGD with momentum. The experiment was conducted up to 500 epochs with 

fine-tuned hyper-parameters for best results. The author noticed that in the early 

stage of binary models training, more averaging is needed for the optimizer to 

proceed in the presence of binarization operation. However, in the late stages of 

training, the exploration power of the optimizer is increased by noisier sources. 

Bengio et al. [48] introduced a distinct vanilla STE as compared to the common 

STE variant BinaryConnect, XNOR-Net, and other binary models. The weights can 

be maintained within the range after clipping of weight via BinaryConnect after 

gradient updates. Batch normalization (BN) utilizes mini-batch statistics during 

training, but at inference time, the model is classified as a single data point. 

Reduction in momentum rate of BN can neutralize the long training effect. Although 

the effect is tiny, it is consistent. Besides that, Krsihnamoorthi [49] had also reported 

that better performance of a model can be achieved by handling differently in Batch 

normalization during the quantized model training process. An equivalent non-

binary can be trained with the absence of binarization operations. This is useful 

since the model is readily available in many cases. This pre-trained model can be 

utilized for the initialization of values for full-precision proxies in the binary model. 

Furthermore, the model can be used for STE training and gradient clipping. In [50], 

the author reported that the work can operate well in terms of accuracy and 

converges even faster as compared to ResNet-18 [51] and VGG-10 architecture than 

training the binary models end-to-end. Moreover, a similar result was reported in 

[52].  

To train the binary model with high productivity, there are some 

recommendations listed by the [50], such as utilizing ADAM for objective 

optimization, avoiding early stopping, separation of training into two stages, 

gradient removal and weigh clipping in the first stage, and reduction of averaging 

rate in the second stage of Batch Normalisation layers. Courbariaux et al. [45] 

introduced a method to train BNNs via binary weights and activations at run-time. 

The author uses two different binarization functions based on [55]. These two 

binarization functions are deterministic and stochastic. Several experiments were 

conducted based on a different framework Torch7 [61] and Theano [62, 63]. These 

frameworks Theano and Torch7 were used to test the MLP on MNIST and ConvNet 

on CIFAR-10. The result obtained is shown in Table 1. BNNs can reduce the 

memory size and access in the forward pass either at run-time or train time. It allows 

the replacement of arithmetic operation with a bit-wise operation that may lead to 

an increase in power efficiency. 
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One of the well-known TinyML frameworks is TensorFlow Lite developed by 

Google. TensorFlow Lite can adapt the TensorFlow model and intended to enable 

them to run in a mobile and embedded device. This framework consists of two 

components which are converter and interpreter. The converter is used to port the 

TensorFlow models to optimized code that can be executed in constrained 

platforms. Besides that, the interpreter runs the code generated by the converter. 

Therefore, platforms such as MCUs, smartphones, and embedded Linux can execute 

the optimized model. 

Moreover, TensorFlow Lite Micro (TFLM) is an open-source ML inference 

framework for running deep-learning models on embedded systems [64]. Robert et 

al. [64] introduced the model-export workflow from TensorFlow training 

environment to TensorFlow Lite Exporter and finally to TensorFlow Lite Flatbutter 

File, which enables TFLM to load the inference model. 

 

3. Conclusion  

Anomaly detection is an unsupervised learning algorithm. This algorithm aims to 

identify the patterns in data that do not follow the expected behavior. Therefore, 

introducing anomaly detection into TinyML can effectively reduce the broke down 

of the system. However, in order to meet the tight constraint of the embedded 

system, model optimization is required. There are several types of model 

optimization, such as pruning, quantization, knowledge distillation, layer 

decomposition, and binarization. There is no best model optimization but only 

Table 1. Classification Test Error Rates of DNNs Trained on MNIST 

(MLP Architecture without Unsupervised Pretraining), CIFAR-10 

(without Data Augmentation), and SVHN [45]. 

Data set MNIST SVHN CIFAR-10 
Binarized activations+weights, during training and test 

BNN (Torch7) 1.40% 2.53% 10.15% 
BNN (Theano) 0.96% 2.80% 11.40% 

Committee 

Machines’ Array 

[53] 

1.35% - - 

Binarized weights, during training and test 

BinaryConnect [54] 1.29±0.08% 2.30% 9.90% 

Binarized activations+ weight, during test 

Expectation Back 

Propagation [55] 

2.2±0.1% - - 

Bitwise DNNs [56] 1.33% - - 

Ternary weights, binary activations, during test 

Hwang & Sung [57] 1.45% - - 

No binarization (standard results) 

Maxout Networks 

[58] 

0.94% 2.47% 11.38% 

Network in 

Network [59] 

- 2.35% 10.41% 

Gated pooling [60] - 1.69% 7.62% 
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suitable model optimization for each application. Industry revolution 5.0 

emphasizes cooperation between humans and machines. Therefore, TinyML can 

ensure the working area for humans is safe by alarming everyone if the equipment 

is misbehaving.  
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